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Список основных обозначений 

 

◄  - начало  и ►- конец доказательства  

A - матрица, оператор  

A
~

 - приближение матрицы A  

a - коэффициент  

ija  - элементы матрицы   

Аа  - элемент а принадлежит множеству А 

Аа  - элемент а не принадлежит множеству А 

},,{ cbaА  - множество А состоит из элементов а, b, c 

BА , AB   - подмножество А включено в множество В (В включает А) 

BА , AB   - подмножество А включено в множество В или совпадает с ним 

],[ ba  - отрезок с концами в точках а и b 

),( ba  - интервал с концами в точках а и b 

),[ ba , ],( ba  - полуинтервалы с концами в точках а и b 

C  - фонд непроизводственного потребления 

c  - среднедушевое потребление на одного человека  

TD4  - граница TD4 .  

),0(4 TGDT  ,   - знак декартова произведения, TTT DDD 444  ,  

E - единичная матрица размера nn  

f - приближение функции  

f - показатель фондоотдачи, constf   

G  - связная область  

G - граница связной области  G  

0G  - нижняя граница области  G  

1G -  боковая граница области  G  

 2G -  верхняя часть границы G  

I  - внешние инвестиции 

i  - удельные инвестиции на одного занятого 



 5 

K  - конус, производственные фонды 

k  - фондовооруженность  

nk ,1  - число k принимает последовательно все значения из множества натуральных 

чисел от 1 до n включительно 

)(tM  - чистая прибыль малого предприятия за вычетом налоговых отчислений 

)(tM об  - общая прибыль малого предприятия  

Msup  - верхняя грань множества М 

Minf  - нижняя грань множества М 

)(tN  - сумма налоговых отчислений  

N  - абсолютная погрешность решения системы 

n  - вектор 

о  - нулевой вектор размерности n  

)(tP  - стоимость продукции, выпущенной в текущий момент времени t  

),( xtQ  - мощность источника примеси  

nR - векторное пространство   

T  - операция транспонирования 

t  - время 

 vu,  - конусный отрезок 

v  - годовой темп прироста людских ресурсов 

W  - величина добавленной стоимости  

Wcond - коэффициент изменения относительных погрешностей при неточном задании 

элементов матрицы W   

1x - некоторый фиксированный вектор 

ix - общий (валовой) объем продукции отрасли за данный промежуток  времени 

ijx  - обьем продукции i  ой отрасли, потребляемой в процессе производства j  ой 

отраслью  

 nxxxx ,...,, 21  - n- мерный вектор 

},sup{ xxx   - модуль числа х  

}{ nx  - последовательность элементов  
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Т

nхххх ),...,,( 21  - координатное представление вектора в n –мерном векторном 

пространстве 

)(tY  - валовый внутренний продукт 

y  - производительность труда 

 - коэффициент замещения  

)(t  - дельта функция Дирака 

  - вещественный вектор   

  - доля выбывших за год основных производственных фондов 

  - доля чистой прибыли  

 - норма накопления  

0 - неотрицательно-определенная матрица 

 t - дельта функция Дирака 

  - начальное приближение вектора x   

  - знак декартова произведения 

С - фонд непроизводственного потребления  

],[ baC  - пространство непрерывных на отрезке ],[ ba  функций 
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ВВЕДЕНИЕ 

Многие задачи математического анализа и дифференциальных 

уравнений приводят к необходимости исследования вопросов о корректной 

постановке этих задач, минимизации нормы уклонения в соответствующих 

пространствах решения рассматриваемой задачи от ее возмущенного 

решения. Если задача является некорректно поставленной, то ее решение или 

не существует, или не является единственным, или является неустойчивым. 

Кроме того, в таких задачах важно выяснить не только факт корректности 

или некорректности задачи, но и разработать эффективные методы 

построения их аналитического и численного решения. Подобные проблемы, 

очевидно, возникают и в математических моделях экономических процессов. 

Однако подобных исследований, судя по публикациям в периодических 

журналах, не проводилось. Более того, подобных исследований никто не 

проводил методами теории оптимальной фильтрации.  

Поэтому исследования, изложенные в учебном пособии, являются 

актуальными. Авторы считают, что их результаты целесообразно включить в 

учебный процесс. Данное пособие направлено на решение важной 

методической задачи:  разработать математические модели экономических, 

затрагивающих общее состояние экономики страны, региона, предприятия 

(фирмы), и экологических процессов, оказывающих негативное воздействие 

на окружающую среду в целом и состояние здоровья людей в частности. 

Изложенные в пособии методы их исследования позволяют указать пути к 

решению (в рамках указанной научной проблемы) важной научной задачи: 

исследовать корректность постановки математических моделей, 

описывающих экономические, биологические и экологические процессы; для 

математических моделей, описывающих экономические процессы, указать 

способы подавления случайных помех, возникающих при их использовании 

на практике, доступной студентам 3-5 курсов физико-математических 

специальностей классических университетов.   
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В первой главе изложены основные результаты проведенных 

исследований, используемые в последующих главах для анализа 

экономических моделей,  моделей из экологии и  биологии, основные 

сведения о корректной постановке математических задач и моделей, 

известные результаты о фильтрации случайных помех в линейных ситемах.  

Во второй, третьей и четвертой главах изложены результаты, 

принадлежащие авторам. 

Вторая глава посвящена изложению результатов исследования на 

корректность математических моделей, описывающих макро- и 

микроэкономические процессы.  

В первом параграфе изучается задача о корректности балансовой 

модели Леонтьева, т. е. задача о существовании, единственности и 

устойчивости решения этой модели. 

Во втором и третьем параграфах представлены результаты исследования  

на корректность математических моделей Солоу и динамической модели 

Леонтьева.  

В четвертом параграфе -  динамической модели микроэкономики. 

В третьей главе изучается задача фильтрации ошибок измерения в 

математических моделях экономических процессов. 

Первый параграф посвящен одношаговой фильтрации ошибок 

измерений вектора спроса в балансовой модели Леонтьева  

                                          0,  xfxAX ,                                          (0.0.5) 

где A – заданная технологическая матрица размера nn , f – известный 

вектор спроса размерности n , x – неизвестный вектор валового производства 

(выпуска) размерности n , подлежащий определению, 0 – нулевой вектор 

размерности n . 

Во втором параграфе приводится многошаговая оптимальная 

фильтрация ошибок измерений вектора спроса f , так как на практике вектор 

f  измеряется не один раз, как это предполагалось в первом параграфе, а 

многократно: k  раз, 1k .  
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Третий, четвертый и пятый параграфы посвящены задаче фильтрации 

случайных помех соответственно в математической модели Солоу, 

динамической модели Леонтьева и динамической модели микроэкономики.      

В четвертой главе приведены результаты исследований на корректность 

постановки задачи Коши и краевых задач, описывающих рассеяние примеси 

в турбулентной атмосфере. 

В первом параграфе приведена постановка задачи Коши со смешанным 

носителем   для классического уравнения теплопроводности  

                                        0,02  constaUUa
yxx

.                               (0.0.6) 

Во втором параграфе приведена теорема о корректной постановке  

краевой задачи, допускающей обобщенное решение и описывающий 

рассеяние примеси в турбулентной атмосфере.                       

В третьем и четвертом параграфах изложены результаты исследования 

соответственно на разрешимость и устойчивость краевой задачи, 

допускающей классическое решение. 

       Данное пособие адресуется студентам и преподавателям классических 

университетов, изучающим функциональный анализ, численные методы, 

математическую экономику. Будет полезна аспирантам: многие из 

изложенных здесь результатов принадлежат авторам данного пособия (см. 

литературу), были получены ими в ходе проведения научных исследований в 

области математической экономики и могут быть использованы для 

проведения дальнейших исследований в этой области и решения научных 

задач, аналогичных приведенным в пособии.  
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ГЛАВА I.  ЭКОНОМИКО-МАТЕМАТИЧЕСКИЕ МОДЕЛИ 

ЛЕОНТЬЕВА, СОЛОУ, ДИНАМИЧЕСКАЯ МОДЕЛЬ МАЛОГО 

ПРЕДПРИЯТИЯ 

§1. Балансовые экономико - математические модели Леонтьева 

 

Эффективное ведение народного хозяйства предполагает наличие 

баланса между отдельными отраслями, каждая из которых при этом 

выступает двояко: с одной стороны – как производитель некоторой 

продукции, а с другой – как потребитель продукции (и своей, и 

произведенной другими отраслями). 

 Предположим, что вся производящая сфера народного хозяйства 

разбита на n отраслей: ,,,, 21 nQQQ  , каждая из которых производит свой вид 

продукции, причем разные отрасли производят различные виды продукции. 

Связь между отраслями, как правило, отражается в таблицах межотраслевого  

баланса. Математическая модель, позволяющая провести  их анализ, 

разработана в 1936 г. американским экономистом В. Леонтьевым. В 

дальнейшем отрасль iQ , ,,,1 ni   будем называть «i-я отрасль». 

  В процессе производства часть продукции идет на  

внутрипроизводственное  потребление данной отрасли и других отраслей, а 

другая часть предназначена для личного и общественного потребления. 

 Рассмотрим процесс производства за некоторый промежуток времени 

 10 ,TT  (например, год) и введем следующие обозначения: 

ix -общий (валовой) объем продукции отрасли за данный промежуток  

времени; 

ijx -объем продукции i -ой отрасли, потребляемой в процессе производства j-

ой отраслью   nji ,....,2,1,  ; 

iy  -объем продукции отрасли i , предназначенной к потреблению в 

непроизводственной сфере (объем конечного потребления). Этот объем 

может достигать 75% всей произведенной продукции, в который входят  
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создаваемые в хозяйстве (на предприятии) запасы, личное  потребление, 

обеспечение общественных потребностей, поставки на экспорт.  

 Рассмотрим таблицу:  

 Межотраслевой баланс          Таблица 1. 

Производственное  потребление Конечное потребление    Валовой выпуск  

x11  x12 ………….x1n 

x21 x22…………..x2n 

……………………………….. 

xn1 xn2………………….. x nn 

y1 

y2 

…………………………. 

yn 

x1 

x2 

……………. 

xn 

  

 Балансовый характер этой таблицы выражается в том, что входящие в 

нее величины должны удовлетворять соотношениям: 

               .,,1,

1
21

ni
i

y
n

j
ij

xy
in

x
i

x
i

x
i

x i  


                      (1.1.1) 

 Эти соотношения означают, что валовой выпуск ix  равен сумме объемов 

продукции, потребляемой n отраслями, и продукции, потребляемой в 

непроизводственной сфере. 

 Равенства (1.1.1) называются соотношениями баланса. Таким образом 

таблица отражает баланс между производством и потреблением. Будем 

рассматривать стоимостный межотраслевой баланс, когда  все величины, 

входящие  в (1.1.1), имеют  стоимостное выражение. 

 Введем в рассмотрение коэффициенты прямых затрат: 

                                         ,,,2,1,, nji
x

x
a

j

ij

ij                                               (1.1.2) 

показывающие, сколько единиц продукции i-й отрасли идѐт на производство 

единицы продукции j-й отрасли. Из (1.1.2) следует  линейная зависимость 

материальных затрат от валового выпуска, т.е.  

.,,2,1,, njixax jijij                                               (1.1.3) 

 Вследствии соотношения (1.1.3) модель межотраслевого баланса получила 

название «линейной». Из (1.1.1) и (1.1.3) следует, что  
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                                       



n

j

jjiji yxax
1

, ni ,,2,1  ,                                    (1.1.4) 

или в матричной записи 

                                      ,yxAx                                                             (1.1.5) 

где 























nnnn

n

n

aaa

aaa

aaa

A

,...,

.......................

,...,

,...,

21

22221

11211

  –  

матрица прямых затрат, 



















nx

x

x

x 2

1

 −  

 вектор валового выпуска, 



















ny

y

y

y 2

1

 –  

вектор конечного потребления. 

    Соотношение (1.1.5) называется уравнением линейного 

межотраслевого баланса.  

         Поставим задачу: для  предстоящего планового периода [T0, T1] по 

заданным вектору конечного потребления y  и матрице прямых затрат A , 

определить вектор x  валового выпуска. Решение этой задачи позволяет дать 

ответ на вопрос: сколько нужно произвести  продукции различных видов x , 

чтобы обеспечить заданный уровень конечного потребления y . 

Предполагается, все элементы матрицы A  и компоненты векторов y  и 

x неотрицательны: 0,0  yA , 0x . 

Определение 1. Матрица 0A  называется продуктивной, если для 

любого вектора 0y    существует неотрицательное решение x  уравнения 

                                                      yxAx  ,                             (1.1.6) 
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при этом модель Леонтьева (1.1.6), определяемая матрицей A , так же 

называется продуктивной. 

Модель Леонтьева продуктивна, если любой вектор 0y  конечного 

потребления можно получить при подходящем валовом выпуске 0x .  

Существует несколько критериев продуктивности матрицы А [35]. 

Например, один из них утверждает, что матрица А продуктивна, если ее 

элементы удовлетворяют условиям: 0ija , для любых nji .....,,2,1,  , 







n

j

ij
nj

a
1

,...,2,1
1max  и существует по крайней мере один номер j такой, что ija <1.  

Межотраслевую модель (1.1.5) с учетом времени  t можно записать в 

виде:  

                                                  )()()( tytAxtx  .                                             (1.1.7) 

  

§2. Динамическая модель микроэкономики 

 

При описании динамической модели  предприятия (фирмы) будем 

использовать следующие обозначения [86]:  

)(tP стоимость продукции, выпущенной в текущий момент времени t ; 

f показатель фондоотдачи, constf  ; 

)(tA стоимость основных производственных фондов; 

c удельная себестоимость выпуска продукции в стоимостном выражении, 

constc   ; 

)(tM об общая прибыль малого предприятия; 

)(tM чистая прибыль малого предприятия (т.е. прибыль, получаемая из 

вычета из нее )(tMоб  налоговых отчислений); 

)(tN сумма налоговых отчислений; 

)(tI внешние инвестиции, полученные малым предприятием на 

безвозмездной основе. 
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   Динамическая модель малого предприятия строится при следующих 

предположениях (допущениях). 

1. Развитие малого предприятия происходит как за счет инвестиций 

(внешних источников), так и за счет прибыли (внутренних источников). 

2. Единственным, лимитирующим выпуск продукции, фактором являются 

основные производственные фонды. 

3. Малое предприятие будет функционировать при постоянной фондоотдаче. 

4. Сумма налогов отчислений складывается лишь из двух видов налогов: 

      а) начисляемых на прибыль, 

     б) зависящих от объемов производства.  

         Согласно указанным обозначениям и допущениям 

                 )()( tfAtP  ,                                                               (1.2.1) 

                        )()1()()()( tPctcPtPtM об   .                                                (1.2.2) 

                                      )()()( tNtMtM об                                                        (1.2.3) 

В свою очередь, сумма налоговых отчислений )(tN может быть представлена 

в виде: 

                                    )()1()()( 21 tMktPtN   ,                                          (1.2.4) 

где 21, ставки налога на объем выпуска и прибыль соответственно; 

    доля чистой прибыли, отчисляемой на реинвестирование )10(   ; 

k   коэффициент, отражающий долю реинвестируемых средств прибыли, не 

имеющих льгот по налогообложению )10(   .   

Прирост основных производственных фондов за счет внутренних 

средств и внешних инвестиций составит 

                                    TttItM
dt

tdA
,0),()(

)(
  .                                         (1.2.5) 

Подставив выражения (1.2.2) в (1.2.3), затем (1.2.4) в (1.2.3), выразим 

)(tM через )(tP : 

)(
)1(1

1
)(

2

1 tP
k

c
tM








 . 

Подставляя затем  )(tM в (1.2.5), придем к соотношению: 
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                                                  )()(~)(
tItPa

dt

tdA
 ,                                           (1.2.6)       

где                                            
)1(1

)1(~

2

1










k

c
a .   

Учитывая (1.2.1), (1.2.6) перепишем в виде: 

                                           )()(
)(

tItaA
dt

tdA
 ,                                                  (1.2.7) 

где  

                                           faa ~ f
k

c






)1(1

)1(

2

1




.                                          (1.2.8) 

(1.2.7) предсталяет собой линейное неоднородное дифференциальное 

уравнение первого порядка. 

Рассмотрим три случая динамики поступления инвестиций )(tI  [40]:  

 constItI 0)( постоянный объем инвестиций для каждого момента t ; 

 0,)( ttI линейно -  возрастающие с изменением времени t  

инвестиции со средним темпом 0 const ; 

 tBetI )(  экспоненциально-возрастающие с изменением времени t  

инвестиции со средним темпом 0  и минимальным уровнем 

гарантированной государственной поддержки BI )0( . 

Эти случаи соответствуют возможным стратегиям государственной 

финансовой поддержки малого предпринимательства. 

Решения линейного неоднородного дифференциального уравнения с 

постоянными коэффициентами (1.2.7) для рассматриваемых )(tI имеют 

соответственно вид [86]: 

                    
a

I
e

a

I
AtA at 00

0 )()(  ,                                                   (1.2.9) 

                   )1()()(
220  at

a
e

a
AtA at 

,                                                      (1.2.10) 

                 tat e
a

B
e

a

B
AtA 

 



 )()( 0 ,                                       (1.2.11) 

где )0(0 AA  . 
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§3. Математическая модель экономического роста (модель Солоу)  

 

Модель, предложенная лауреатом Нобелевской премии Р. Солоу, 

является моделью экономического роста односекторной экономики. В этой 

модели экономическая система рассматривается как единое целое, она 

производит один универсальный продукт, который может как потребляться, 

так и инвестироваться.  

Модель Солоу отражает важнейшие макроэкономические аспекты 

процесса воспроизводства, при этом экспорт и импорт в ней в явном виде не 

учитываются. Состояние экономики определяется следующими эндогенными 

(рассматриваемые в системе) переменными, изменяющимися с течением 

времени   Ttt ,0,  : 

)(tY – валовым внутренним продуктом (ВВП); 

)(tC – фондом непроизводственного потребления; 

)(tI – инвестициями; 

)(tL – людскими ресурсами, 0)0( LL  ; 

)(tK – производственными фондами, 0)0( KK  . 

Кроме того, в модели используются следующие экзогенные (заданные 

вне системы) показатели, являющиеся постоянными величинами:  

v – годовой темп прироста людских ресурсов, занятых в сфере 

производства; 

 − доля выбывших за год основных производственных фондов;  

 – норма накопления (доля валовых инвестиций в валовом 

внутреннем продукте); 

a – коэффициент прямых затрат. 

Экзогенные параметры удовлетворяют ограничениям [35]:     

                    ,10,10,11  v   10  a . 

Будем предполагать, что объем валового внутреннего продукта )(tY  в каждый 

момент времени t  определяется линейной однородной производственной 

функцией ),,( LKFY    например, функцией Кобба – Дугласа  
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I=PY 

                                        21),(  AKLKFY  ,                                            (1.3.1) 

относительное изменение  людских ресурсов в течении времени t  

пропорционально t :  

                                                   ,tv
L

L



  0)0( LL  .   

Из последнего соотношения вытекает, что                                                    

vteLL 0 . 

Кроме того, предполагаем, что за  время t  производственные фонды )(tK  

уменьшаются за счет их выбытия и возрастают за счет инвестиций. При 

выполнении указанных допущений модель Солоу в абсолютных показателях 

имеет вид [35]: 

                               

.)1(;);,(

;)0(,; 00

YCYILKFY

KKYK
dt

dK
eLL vt








                                (1.3.2) 

 

Функционирование экономики, согласно модели Солоу, можно 

представить в виде схемы: 

 

Рис. 1. Структурная схема модели Солоу 

 

Введем удельные показатели: 


L

K
к  фондовооруженность; 

)(1, kf
L

K
F

L

Y
y 








 - народно-хозяйственная производительность труда;  

y
L

I
i    - удельные инвестиции на одно занятого; 

yc )1(   - среднедушевое потребление на одного занятого. 

Тогда в относительных (удельных) показателях модель Солоу примет вид: 

),( LKFY   L 
Y                C=(1-p)Y 
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0

0

0)0(,),(
l

k
kkvkfk

dt

dk
  , 

                                   ).()1(),();( kfckfikfx                                   (1.3.3) 

§4. Биологические процессы, описываемые уравнением 

02  txx uua  

 

В математической биологии, в особенности при математическом 

моделировании явления переноса в живых системах, часто встречается 

уравнение [52] 

 xxt auu  , consta  ,                                                (1.4.1)  

решение которого в области Q ,     lTtQ ,0,0   удовлетворяет 

начально-граничным условиям: 

                   ttu ,0 ,       ttux ,0 , Tt 0 ,                                   (1.4.2) 

                     xxu 0, ,  lx 0 ,     00   .                                       (1.4.3) 

При решении задачи (1.4.1) - (1.4.3) на ЭВМ удобно использовать 

следующий алгоритм поиска приближенного решения. Заменим  уравнение 

(1.4.1) на каждом шаге hi  нагруженным уравнением теплопроводности:  

                            
 

  xxtxu

xxtxu

ht
au

ii

ii

i

xx









 11 ,

,
det

1
,  ni ,1,0 ;                       (1.4.4) 

(1.4.4) перепишем в виде: 

    1111 ,//   iiiiiiixx xxxhxxuhxxuau ,     

  где   txuu ii , . Из последнего соотношения следует, что  

           .,,, 1

1 txuudxx
ah

u
uuxxdxx

ah

u
txu ixxi

x

x

i

i

i

ixii

x

x

i

i

i

ii







 


 

 

Следовательно, 

               iiii

i

i

iii

i

i uuxxxxx
ah

u
xxxxh

ah

u
txu 














  3132

63

1

2
),( .              (1.4.5) 

Из (1.4.5) при 1 ixx  имеем: 



 19 

ixiiiiiii uuhuh
a

uh
a

u   1

22

1
6

1

3

1
. 

Тогда  

                                    2

11 /6,2 iiixiiiiiii hauuhuuu 
  .                   (1.4.6) 

Уравнение (1.4.6) можно записать в виде:  

    ixiiii

t

i

t
uuhueue ii 

 



 
21 . 

Интегрируя на интервале по t  от 0 до t , и учитывая начальные условия   

(1.4.2)  

                                           )( 1101   iiti xu  ,                                             (1.4.7) 

получаем: 

                             duuhtutu ixii

t

iiiiiiii 3exp2exp2
0

11   . (1.4.8) 

В соответствии с (1.4.5) найдем 

       xii

i

t

iii

i

i uxx
ah

u
xxhxx

ah

u

x

u










  212

2
2

2
, 

при ixx   

 1
2

1
1 


 iiixx uuh

a
uu

ii
 

Заменяя в последнем равенстве сумму 1



ii uu на его значение из (1.4.2), 

находим 

  ixiiiiixx uuhuuh
a

uu
iii

  1
2

1
1

 , 

или 

                                       iiiiixi uahhuuuux
i

  /5,0/32 11  .                         (1.4.9) 

 Формулы (1.4.8) и (1.4.9) позволяют алгоритмизировать процесс поиска 

решения задачи Коши (1.4.1) , (1.4.2), (1.4.3). 

При отыскании приближѐнного решения ),( txu  задачи Коши со 

смешанным носителем для уравнения теплопроводности (1.4.1) в наперед 

заданных точках nxxx ,,, 21   в качестве аппроксимирующего уравнения можно 

выбрать и нагруженные уравнения следующих видов: 
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   ,, txuxa
t

au j

j

xx



   

  
 

 dxtxu
xB

t
au

j

j

x

x

j

xx 













,
2

. 

 Индекс  j  предполагает суммирование от 1 до n;      txuxatxu j

j ,,   – 

некоторая интерполяционная формула (например, формула Лагранжа); 

  ,, uxB j − заданные величины. 

Задача Торнли. Филлотаксис – расположение листьев на растении – 

является одной из интересных проблем биологии. Наиболее часто в природе 

встречается филлотаксис спирального типа, при котором листья на растении 

расположены по спирали вокруг главной оси.  

Угол дивергенции, т.е. угол между последовательно расположенными 

листьями (примордиями), у большинства растений со спиральным 

филлотаксисом близок к углу Фибоначчи: 137,51º . Г.М.  Торнли в 1975 году 

для объяснения возникновения угла  Фибоначчи предложил простую модель 

спирального филлотаксиса, представляющую собой уравнение диффузии:  

                                       xxt a2 , constconsta  ; .                        (1.4.10)                                      

По условию, точечный источник морфогена силы S0  помещен в точку 

(Г,0) или x=0, морфоген диффундирует по окружности в обоих направлениях 

от нее:  половина положительном направлении, а другая половина - в 

обратном. Градиент   в точке х=0 имеет разрыв первого рода,   - функция 

непрерывная для всех  lx ,0  и 0t . Следовательно функция   должна 

удовлетворять условиям:  

                                          tSa x
x

0
0

2

2

1
lim 


  , Tt 0 ,                           (1.4.11) 

                                                    tlt ,,0   , ,0 Tt                                     (1.4.12) 

где T - расчетное время. 

Уравнение  (1.4.10) рассматривается с начальным условием  

                                              xx  0, , lxo  ,                                    (1.4.13) 
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где  x  - непрерывное распределение концентрации морфогена в начальный 

момент времени 0t , которое в силу  (1.4.12) удовлетворяет условию:  

   l 0 . 

Уравнение (1.4.10) с условиями (1.4.11), (1.4.12) и (1.4.13) представляет с 

собой математическую модель спирального филлотаксиса. 

В [52] изучена задача: найти регулярное в области 

   TtlxtxQ  0,0:,  решение   уравнения (1.4.10), непрерывное в Q .  

Данная задача, в случае когда  

                             tStS  exp10 , ,01  constS      const ,               (1.4.14)  

и когда концентрация морфогена меняется по экспоненциальному закону 

                                                   ,exp tx                                              (1.4.15) 

впервые была исследована  и биологически интерпретирована  Дж. Г. Торнли 

[52].  

Лемма 1. Пусть  - регулярное при Ttlx  0,0 , решение 

уравнения (1.4.10), является непрерывным в    TlQ ,0,0   и удовлетворяет 

условию:  

,0lim
0




x
x

v     Tttlt  0,,,0  . 

Тогда максимум функции   в Q достигается лишь в начальный момент 

времени 0t . 

 Из этой леммы вытекает, что задача Торнли не может иметь более 

одного решения [52]. 

 Замена  tu  exp  позволяет свести задачу Торнли к следующей 

нелокальной краевой задаче для уравнения диффузии: 

     ,2

xxt uau                                                (1.4.16) 

                                            xxu 0, , lxo  , 

Tttlututvtux  0),,(),0(),(),0(  
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§5. Корректность математических задач (моделей) 

 

Многие некорректно поставленные задачи легко сводятся к решению 

операторных уравнений первого рода:  

fAx  ,                                                                   (1.5.1) 

где  ,, FfXx  A непрерывный оператор.  

Определение 1 [42]. Задача построения решения (1.5.1) называется 

корректно поставленной (по Адамару), если: 

1) для любого Ff  существует решение уравнения (1.5.1) Xx ; 

2) решение (1.5.1) единственно; 

3) решение x  непрерывно зависит от правой части f , т. е. бесконечно 

малым вариациям f (в метрике пространства F ) соответствует бесконечно 

малые вариации решения x  в X . 

Определение 2 [42]. Пусть в пространстве X  выделено некоторое 

подпространство XY  . Задача построения решения (1.5.1) называется 

корректно поставленной по Тихонову, если: 

1) априори известно, что решение x  существует и принадлежит 

YxY : ; 

2) решение единственно; 

       3) бесконечно малым вариациам правой части f , не выводящим 

решение x  из множества Y , соответствуют бесконечно малые вариации 

решения x  в Х. 

Подпронстранство Y называется множеством корректности [42]. 

Исходная задача, которая была сведена к задаче построения решения 

уравнения (1.5.1), также называется корректно или некорректно 

поставленной, если задача построения решения (1.5.1) является 

соответственно корректно или некорректно поставленной. 

Математические модели, рассматриваемые в последующих главах 

диссертационной работы, представляют собой уравнения: алгебраические, 

дифференциальные (обыкновенные, с  частными производными), на решения 
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которых наложены некоторые ограничения (условия). Поэтому формально 

можно считать, что они описываются операторными уравнениями (1.5.1). 

Определение 3. Математическая модель называется корректной 

(некорректной), если задача построения решения соответствующего этой 

модели операторного уравнения (1.5.1) является корректно (некорректно) 

поставленной. 

Системы линейных алгебраических уравнений довольно часто 

используются при описании реальных процессов в разных отраслях 

народного хозяйства. Для таких систем понятие корректно или некорректно 

поставленных задач построения решения сводится к понятиям 

соответственно обусловленности или плохой обусловленности системы. 

Рассмотрим систему алгебраических уравнений, записанную в 

векторно - матричном виде: 

                                      CWN  ,                                                          (1.5.2) 

где W − невырожднная матрица размера nn , C  ненулевой n   мерный 

вектор свободных членов; nN  - мерный вектор неизвестных. 

Пусть правая часть (1.5.2) получила возмущение С , т. е. вместо 

вектора C  используется приближенный вектор CC  . Реакцией решения 

N  на приращение С правой части будет вектор N , т. е. если N − решение 

(1.5.2), то NN  −решение уравнения 

CCNNW  )( .                                           (1.5.3) 

Принимая за абсолютную погрешность приближенного вектора 

норму разности между точным и приближенным векторами, а за 

относительную погрешность − отношение абсолютной погрешности к 

норме вектора, выведем соотношение между относительными 

погрешностями вектора свободных членов и вектора-решения. Подставляя 

(1.5.2) в (1.5.3), убеждаемся, что поправка N  связана с возмущением  С  

так же, как и (1.5.2) с равенством CNW  , из которого находим ее 

выражение  

CWN  1 ,                                                        (1.5.4)  
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где N − абсолютная погрешность решения системы (1.5.2). 

Вычислив нормы в левых и правых частях равенств (1.5.2) и (1.5.4), 

будем иметь: NWC   и CWN  1 , где матричная норма должна 

быть согласованной с выбранной векторной нормой. Эти два числовых 

неравенства можно перемножить: 

                                  CWNWNC  1 .                                       (1.5.5) 

Разделим (1.5.5) на NC  , получим:  

C

C
WW

N

N 



1 . 

Положительное число 1 WW  называют числом (мерой) 

обусловленности матрицы W  и обозначают Wcond . 

Можно также показать, что тоже самое число 1 WWWcond  служит 

коэффициентом изменения относительных погрешностей при неточном 

задании элементов матрицы W   в (1.5.2). Если матрица  W  получила 

возмущение W и  NN решение возмущенной системы 

CNNWW  )()( , то также справедливы неравенства:  

                
WW

W
condW

N

N







 и 

W

W
condW

NN

N









.                      (1.5.6) 

Неравенства (1.5.5) и показывают (1.5.6), что чем больше число 

обусловленности, тем сильнее сказывается на решении системы (1.5.2) 

ошибка в исходных данных. На практике считают, что если )10( pOcondW  и 

исходные данные имеют погрешность в l - м знаке после запятой, то 

независимо от способа решения системы (1.5.2) в результате можно 

гарантировать не более pl    знаков после запятой. 

Если число Wcond  велико (более 1000), то система считается плохо 

обусловленной. При оценке снизу числа обусловленности используют 

обычно   нормы, в которых  норма единичной матрицы равна единице 

111   EWWWWWcond , 
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т. е. число обусловленности не может быть меньше 1.  

Построение решения так называемых «плохо обусловленных» систем 

линейных алгебраических уравнений связано с определенными трудностями, 

т. к. малым изменениям правых частей этих систем отвечают большие 

изменения решения, выходящие за допустимые пределы. 

Рассмотрим систему уравнений  

                                                    fAx   ,                                                         (1.5.7) 

где A   матрица с элементами ija ,  
ijaA  , x искомый вектор с 

координатами jx ,  jxx  , f известный вектор с координатами if ,  iff  , 

nji ,,2,1,  . 

Если определитель системы (1.5.7) равен нулю, т.е. 0det A , то она 

называется вырожденной. Тогда матрица A  имеет собственные значения 

равные нулю, а матрица A  такого вида у плохо обусловленных систем имеет 

близкие к нулю собственные значения. 

В ряде случаев невозможно установить является ли заданная система 

уравнений вырожденной или плохо обусловленной. Поэтому вырожденные и 

плохо обусловленные системы становятся неразличимыми в рамках заданной 

точности. Такая ситуация может иметь место, в случае, когда матрица A  

имеет достаточно близкие к нулю собственные значения [75]. При решении 

конкретных задач часто правая часть f и элементы матрицы A , известны 

приближенно. Тогда вместо системы (1.5.7) имеем дело с некоторой другой 

системой:  

fxA
~~

 , 

 такой, что  

hAA 
~

,  ff
~

. 

Заменяя матрицу A , на матрицу A
~

, мы тем более не можем определенно 

высказать суждение о вырожденности или не вырожденности системы 

(1.5.7). 
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О системе (1.5.7) в таких случаях нам известно лишь то, что для матрицы 

A  и правой части f  выполняются неравенства 

hAA 
~

,  ff
~

, 

где тип нормы определяется характером рассматриваемой задачи. Очевидно, 

что подобных систем достаточно много, и в рамках небольшой погрешности 

они неразличимы. Поскольку систему (1.5.7) заменяем на приближенную 

систему fxA
~~

  , то в итоге  будем находить приближенное решение системы 

fAx  .  

Если приближенная система не имеет решения, то возникает вопрос: что 

следует понимать в описанной ситуации под приближенным решением 

системы (1.5.7). 

Таким образом, мы должны рассмотреть целый класс неразличимых 

между собой систем уравнений (в рамках заданного уровня погрешности), 

среди которых могут вырожденные и не вырожденные. Методы решения 

таких систем должны быть одними и теми же (т. е. достаточно общими), а 

сами решения - устойчивыми к малым изменениям исходных данных. 

Рассмотрим произвольную систему линейных алгебраических 

уравнений (СЛАУ)  

                                                fAx   ,                                                           (1.5.8) 

где x  и  f  векторы, nT
n Rxxxx  ),,,( 21  , mT

m Rffff  ),,( 21  , A матрица с 

элементами ija ,  
ijaA  , nj ,,2,1  ; mi ,,2,1  ,  mn  . Эта система может 

быть вырожденной, неразрешимой или однозначно разрешимой. 

Псевдорешением системы (1.5.8) называют вектор x~ , минимизирующий 

невязку fAx     на всем пространстве nR . Данная система может иметь не 

одно псевдорешение. Обозначим совокупность всех ее псевдорешений через 

AF , а через 1x некоторый фиксированный вектор из nR , который 

определяется постановкой задачи.  

Нормальным относительно вектора 1x решением системы (1.5.8) будем 

называть псевдорешение 0x с минимальной нормой 1xx  , т. е.  
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110 inf xxxx
AFx




, 
2

1

1

2









 


n

j

jxx . 

Для удобства записи в дальнейшем будем считать 01 x и нормальное 

относительно 01 x  решение называть просто нормальным решением. Для 

любой системы вида (1.5.8) нормальное решение существует и оно 

единственно. Однако задача построения нормального решения системы 

(1.5.8) является некорректно поставленной [75]. 

Пусть A  симметричная матрица, если она невырожденная, то ее можно 

привести к диагональному виду ортогональным преобразованием Vxx , 

Vff . Тогда преобразованная система будет иметь вид:  

  iii fx , ni ,,2,1  , 

где i собственные значения матрицы A . 

Если же симметричная матрица A вырожденная и имеет ранг r , то rn   

ее собственных значений равны нулю. 

Пусть 0i , для ri ,,2,1   и 0i , для nrri ,,2,1  . Будем полагать, 

что система (1.5.8) разрешима и при этом 0

if  для  

nrri ,,2,1  . 

Пусть в системе вместо A  и f заданы их приближения A
~

и f
~

:  

hAA 
~

,  ff
~

,  

где 

                                        
2

1

,

2









 
ji

ijaA ,
2

1

2









 
i

iff .                                 (1.5.9) 

Тогда i  (собственные значения матрицы A
~

) непрерывно зависят от A  по 

норме (1.5.9). Отсюда следует, что собственные значения nrr 
~

,,
~

,
~

21   будут 

сколь угодно малыми при достаточно малых h ,   и   i

i

i fx
~

~
1~


, 

nrri ,,2,1  . Это означает, что найдутся возмущения системы в пределах 
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любой достаточно малой погрешности A
~

 и f
~

, для которых некоторые 

ix~  

будут принимать любые наперед заданные значения [75]. 

Таким образом, задача нахождения (построения) нормального решения 

системы (1.5.8) является неустойчивой. 

 

 §6. Оптимальная фильтрация случайных помех в динамических 

системах   

 

На практике часто возникают задачи определения состояния системы 

по результатам  измерений. Измерения всегда сопровождаются случайными 

ошибками, поэтому следует говорить не об определении состояния системы, 

а об его оценивании путем стохастической обработки результатов измерений. 

Пусть поведение системы описывается стохастическими уравнениями. 

                                                 1),(),( vtztzz                                      (1.6.1) 

где pz  - мерный вектор состояния системы, gv 1 - мерный векторный 

белый шум, ),(),,( tztz  − известные функции состояния системы и времени. 

Значениями функции ),( tz  служат р – мерные векторы, а значениями 

функции ),( tz −  матрицы размера gp (здесь сохранены обозначения из 

[58]). 

Если вектор состояния системы z непрерывно измеряется, то 

результатом измерения будет p – мерный случайный процесс 

),()()( tutztx  где )(tu  - ошибка измерения, представляющая собой 

случайную функцию времени.  

Пусть векторный случайный процесс   TTT zy ,  определяется системой 

стохастических дифференциальных уравнений: 

                               
,),,(),,(

,),(),,( 111

dwtzydttzydz

dwtydttzydy








                                      (1.6.2) 

где y – m- мерная наблюдаемая компонента, а  z – p- мерная ненаблюдаемая 

компонента этого процесса, w, 1w -соответственно m  и g- мерные процессы с 
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независимыми приращениями, ),,(1 tzy , ),,( tzy  - известные векторные 

функции, отображающие пространство RRR pm  соответственно в 

пространства mR  и pR , а  ),,(1 tzy  и  ),,( tzy  - известные матричные 

функции, отображающие  RRR pm   в mgR  и pgR  соответственны. Требуется 

оценить вектор состояния z в любой момент 0tt   по результатам 

непрерывного наблюдения процесса y в интервале времени  tt ,0 . 

 Сформулированная задача называется задачей фильтрации, так как она 

решается путем пропускания наблюдаемого сигнала )(ty  через устройство, 

называемое фильтром, предназначенное для «фильтрации» помехи 

)(),( 11 tdwty  и получения на выходе процесса )(tz


, в определенном смысле 

максимально точно воспроизводящем процесс ).(tz      

 Естественным критерием оптимальности во многих задачах 

математической статистики служит критерий минимума среднего квадрата 

ошибки: 

.min
2
 zzM


 

Обозначим через t

ty
0
 совокупность значений наблюдаемого процесса в 

интервале времени     .,:)(:, 00 0
ttyytt t

t                             

Задачу оптимальной фильтрации удается решить до конца в случае 

линейных уравнений:  

 

  ,

,

01

1101

dwdtazaaydz

dwdtbzbbydy








 

где коэффициенты 10101 ,.,,,,  иbbbaaa  в общем случае зависят от t. В этом 

случае распределение процесса  )(,)( tzty TT  нормально при нормальном 

распределении его начального значения  TTT zy 00 , . Тогда, и апостериорное  

распределение вектора состояния системы z нормально относительно 

наблюдаемого процесса )(ty  и для его определения достаточно найти 

апостериорное математическое ожидание z


 и ковариационную матрицу R. 
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В этом случае оптимальный фильтр, называемый фильтром Калмана-Бьюси, 

имеет вид: 

                    ,01

1

111101 dtbzbbydyRbdtazaayzd TTT 
 

          (1.6.3) 

где R удовлетворяет векторному дифференциальному уравнению 

                          .1

1

111111 dtbRRbRaRadR TTTTTT  


     (1.6.4) 

Таким образом, уравнения (1.6.3), (1.6.4) позволяют найти оптимальную 

оценку z


 вектора состояния системы z и его апостериорную ковариационную 

матрицу R,  характеризующую точность оценки z


. 

Уравнение (1.6.4)  не содержит z


 и, следовательно, может быть 

проинтегрировано отдельно. Определив R, можно найти   

                                             1

1111


 TTTRb                               (1.6.5)                                                                        

и определить оценку z


 вектора состояния системы z:  

  

                                       dtbzbbydydtazaayzd 0101 


 .            (1.6.6) 

Соотношения (1.6.5) и (1.6.6) полностью решают задачу оптимального 

оценивания состояния линейной системы, т.е. задачу линейной фильтрации. 

Эти уравнения были впервые получены Калманом и Бьюси при 0 ba  [58]. 

 

§ 7. Методы решения некорректно поставленных задач 

 

7.1. Метод регуляризации по А. Н. Тихонову 

Метод регуляризации по Тихонову является дальнейшим развитием 

метода наименьших квадратов (МНК) Гаусса и метода псевдообратной 

матрицы (МПОМ) Мура - Пенроуза. Рассмотрим метод регуляризации 

применительно к операторному уравнению [68]: 

                                     ,2,2, LfLyfAy       (1.7.1) 

где А - линейный вполне непрерывный оператор,  f - заданная функция,           

у - искомое решение. Вместо точных выражений f и А известны их 

приближения f̂  и А̂  такие, что  



 31 

                                                       
2

ˆ
L

ff ,                                          ( 1.7.2) 

                                                       
2

ˆ
L

AA ,                                               (1.7.3) 

где δ ≥ 0 и ξ ≥ 0 –погрешности правой части f  и оператора A  (точные их 

верхние оценки). В этом случае (1.7.1) принимает вид:  

                                         22
ˆ,ˆ,ˆˆˆ LfLyfyA  .                                         (1.7.4) 

В дальнейшем (для упрощения записи) будем использовать уравнение 

(1.7.1), подразумевая, что в действительности рассматривается уравнение 

(1.7.4). 

Метод регуляризации по Тихонову требует выполнения двух условий:  

условия минимума невязки, как в МНК Гаусса, и условия минимума нормы 

решения, как в МПОМ Мура - Пенроуза. Чтобы выполнялись эти два 

условия, необходимо решить следующую задачу  условной минимизации, 

решаемую методом неопределенных множителей Лагранжа:  

                                      
yLL

yfAy min
22

22

  ,                                        (1.7.5) 

здесь 0  – параметр, являющийся неопределенным множителем Лагранжа. 

Его принято называть параметром регуляризации. Из (1.7.5) вытекает 

уравнение Тихонова [75]: 

                                           (  Е + А
*
 А) уα =А

*
 f,                                           (1.7.6)               

где Е – единичный оператор: 2, LyyEy  . 

Если   = 0, то метод регуляризации по Тихонову переходит в МНК 

Гаусса с крайне неустойчивым решением, но минимальной невязкой 

2

fAу  . 

С увеличением же   решение y  становится более гладким и 

устойчивым  [68].  

Если  δ, ε → 0, то α → 0 и  

                                   fAfAAAEy **1*

0
)(lim  





.                              (1.7.7) 

Таким образом, метод регуляризации Тихонова является обобщением 

метода наименьших квадратов Гаусса и метода псевдообратного оператора 
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Мура–Пенроуза. Метод регуляризации по Тихонову устойчив, т.е. 

корректность по Адамару выполняется, и эта устойчивость обусловлена 

следующими обстоятельствами. Оператор А
*
А в (1.7.6) является 

положительно определенным, поэтому все его собственные значения 

вещественны и неотрицательны:    λi (A
*
A) ≥ 0,   0)(min AA .  

 Наличие  слагаемого  αЕ в (1.7.6) увеличивает все значения λi (A
*
A)  на 

α, оператор  αE + A
*
A становится обратимым, причем  

   /1)( 1* AAE . 

Задача построения решения (7.6) является устойчивой. 

Решение уравнения (1.7.6) имеет вид:  

                                            yα = (α E+A
*
 A)

–1
A

*
 f.                                     (1.7.8) 

В более общем случае при использовании метода регуляризации 

Тихонова вместо (1.7.5) рассматривают задачу  

                                       
y

yfAу min
22
  ,                                  (1.7.9) 

где ψ– начальное приближение решения у. Тогда приближенное решение 

принимают вид: 

                                            yα =ψ+ (α E+A
*
 A)

–1
A

*
 (f – А ψ).                        (1.7.10) 

Как показывает анализ решения большого числа прикладных задач метод 

регуляризации по Тихонову, несмотря на то, что он использует минимум 

априорной информации (значения погрешностей δ, ξ и начального 

приближения   решения y ), является эффективным методом решения 

некорректно поставденных задач. 

Очень удобным  при изучении некорректно поставленных задач со 

случайными помехами являются методы оптимальной  фильтрации этих 

помех: методы Калмана–Бьюси и Винера, использующие среди устойчивых 

методов построения решений некорректно поставленных задач, наибольшее 

количество априорной информации: в методе Калмана-Бьюси − информацию 

о ковариациях случайных ошибок и математических ожиданиях правой части 
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и решения, а в методе Винера – о спектральных плотностях мощностей 

шумов. 

7.2. Построение оптимальной оценки решения системы линейных 

алгебраических уравнений с помощью одношагового фильтра Калмана-

Бьюси 

 Рассмотрим систему линейных алгебраических уравнений 

                                                 Ау + v = f,                                               (1.7.11) 

или  

                                                mifvya ii

n

j

jij ,1,
1




,             (1.7.12)                        

где     А – матрица размера  m×n, 

          у – искомый вектор размерности n , 

          f  – измеряемый вектор- столбец размерности m , 

         v  –  вектор-столбец случайных помех размерности m . 

Предполагаются выполненными следующие предположения. 

1) Математическое ожидание случайного вектора v равно нулю:  

miv
Q

vvE
Q

g
giQ

,1,0
1

lim][
1

 



,                                      (1.7.13) 

                            

где  g – номер реализации или эксперимента, 

Q – число реализаций случайного процесса v. 

2) Задана симметричная положительно определенная m×m –матрица –

ковариаций ошибок 

     R = E[v v
T
],                                                      (1.7.14) 

или                      

                                mlivv
Q

R
gl

Q

g
giQ

il ,1,,
1

lim
1

 



.                                       (1.7.15) 

Каждый диагональный элемент матрицы R есть квадрат 

среднеквадратической погрешности измерения fi , т.е. Rii=
2

i =ζi, а 

недиагональный элемент Ril, i ≠ l, определяет корреляцию погрешностей vi и 

vl. 
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3) Задан вектор размерности n  

                                           ψ = E [y]−                                                     (1.7.16) 

–математическое ожидание (начальное приближение, априорная оценка) 

вектора у:  

                                          .,1,
1

lim
1

njy
Q

Q

g
gjQ

j  



                                     (1.7.17) 

4) Задана симметричная, положительно определенная размера n×n 

матрица ковариаций ошибок решения y :   

                                        ].))([( TyyEM                                   (1.7.18) 

Пусть требуется найти оценку ŷ  решения  у из (1.7.11), определяемую 

из условия:   

               
y

TT yMyfAyRfAy min)()()()( 11    .                       (1.7.19)         

              

Из (1.7.19) [68]  следует, что: 

                                )()(ˆ 1111  AfRAARAMy TT   ,                           (1.7.20) 

причем апостериорная матрица ковариаций ошибок R  размера nn  

определяется соотношением: 

                               111 )(])ˆ)(ˆ[(   ARAMyyyyER TT .                   (1.7.21) 

7.3. Сравнительный анализ оценок, получаемых с помощью 

одношагового фильтра Калмана-Бьюси  и методом регуляризации 

Тихонова 

Если  А, у и f  вещественнозначны, то условие минимизации в методе 

регуляризации Тихонова можно записать в виде  

                    
y

TT yyfAyfAy min)()()()(   .                             (1.7.22)   

   Сравнивая (1.7.19) и (1.7.22) заключаем, что роль α играет 

(символически) R/M. Наиболее отчетливо сравнительный анализ методов 

Калмана и Тихонова можно провести в случае, когда  

                                    M = ε
2
 E,           R = δ

2
 E,                                     (1.7.23) 
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где ε и δ– априорные среднеквадратические ошибки решения y и правой 

части f  из (7.11),  Е– единичная матрица. В этом случае оценка y


 решения 

y , полученная методом Калмана-Бьюси имеет вид: 

                                       )()(ˆ 1

2

2





 AfAAAEy TT   ,                            (1.7.24) 

а апостериорная матрица ковариаций ошибок решения y равна  

                                             1

2

2
2 )(  AAEP T




 .                                          (1.7.25) 

Если же оценка y  решения y  из (1.7.11) строится методом регуляризации 

Тихонова, то она имеет вид:  

                                         )()( 1  AfAAAEy TT   .                            (1.7.26) 

Сравнение (1.7.24) и (1.7.26) показывает, что   

                                                
2

2




  .                                                            (1.7.27) 

При данном   методы Калмана-Бьюси и Тихонова дают совпадающие 

(одинаковые) оценки, т.е. yy


 . При этом, апостериорная матрица 

ковариаций ошибок решения равна   

                                             12 )(  AAEP T


.                                        (1.7.28) 

Из (1.7.28) следует, что 

                                                 




 Py .                                    (1.7.29) 

7.4. Многошаговый (многократный) фильтр Калмана-Бьюси 

Для одношагового процесса (когда имеется лишь одна реализация 

вектора f) требование об априорном задании величин ψ и М, содержащееся в 

методе Калмана, трудно выполнимо. Поэтому фильтр Калмана-Бьюси 

обычно применяется для многошаговых процессов (для которых в различные 

моменты времени t  имеем различные реализации f, при  этом ψ и M 

итеративно уточняются). Общая схема использования на практике 

многошагового фильтра Калмана выглядит следующим образом  [68]. 
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Из априорных соображений выбираются начальные приближения для 

решения 0y  и матрицы ковариаций ошибок решения MP 0 . Для выбора 

начальных приближений можно использовать метод регуляризации Тихонова 

и положить : 

                                 fAAAEy TT 1

0
)(   ,                                        (1.7.30) 

                                 .)( 12

0

 AAEP T                                            (1.7.31) 

Последующие приближения определяются по следующей итерационной 

схеме: 

                            )()( 1

1111

11 



  kkk

T

k

T

kkk AyfRAARAPyy ,                        (1.7.32) 

                            ,...3,2,1,)( 111

1  

 kARAPP k

T

kk                                          (1.7.33) 

Многошаговый фильтр Калмана-Бьюси обладает большими 

возможностями обработки результатов измерений по сравнению с 

одношаговым, но он требует значительных по объему данных о результатах 

наблюдений. 

Выводы к главе I 

В первой главе изложены основные сведения о математических моделях 

Леонтьева, Солоу, математической модели микроэкономики, моделях из 

биологии, фильтрах Калмана - Бьюси, применяемых для подавления 

случайных помех в линейных алгебраических уравнениях и стохастических 

системах. Приведены и подробно описаны: уравнения соотношения баланса в 

экономической модели Леонтьева,  модель экономического роста Солоу, 

задача Коши  

0,  constauau xxt  

   ttu ,0 ,       ttux ,0 , Tt 0 , 

   xxu 0, ,  lx 0 ,     00   , 

которая часто используется в математической биологии.  

В этой же главе описан метод регуляризации (по Тихонову) решения 

операторного уравнения  

Ау = f,   уL2,   f  L2 , 
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где  А - линейный вполне непрерывный оператор,  f - заданная правая часть,     

у - искомое решение.   

Эти результаты будут использованы в последующих главах для анализа 

изучаемых задач. 

 

Вопросы для самопроверки 

1. Какое уравнение называется уравнением линейного межотраслевого 

баланса? 

2. Какая матрица называется продуктивной? 

3. Дайте определение односекторной экономики. 

4. Какое уравнение называется уравнением теплопроводности? 

5. В чем суть задачи Торнли? 

6. Какая задача называется корректно поставленной? 

7. Каое решение называется регулярным? 

8. Что называется оптимальной фильтрацией? 

9. Чем отличаются между собой одношаговый фильтр Калмана-Бьюси от 

метода регуляризации Тихонова? 

Упражнения 
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ГЛАВА II.  КОРРЕКТНОСТЬ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ, 

ОПИСЫВАЮЩИХ МИКРО - И МАКРОЭКОНОМИЧЕСКИЕ 

ПРОЦЕССЫ 

§1.  Корректность балансовой модели Леонтьева 

 

Введем некоторые важные определения, используемые при 

доказательстве приводимой ниже теоремы. 

Определение 1 [53]. Конусом называется множество K , элементы 

которого удовлетворяют следующим аксиомам: 

.10   Из Kx и 0t , где t  скалярная величина, следует, что Ktx ; 

.20  Из Kx и Ky следует, что Kyx  ; 

.30  Из Kx и 0x следует, что Kx ; 

.40  Множество K  замкнуто по норме банахова пространства E , т. е. предел 

любой сходящейся последовательности элементов множества K  также 

принадлежит множеству K . 

Определение 2 . Пусть A матрица размера ss . Оценкой нормы 

матрицы A  называется число A , обладающее следующими свойствами. 

.10  Для любой матрицы A  размера ss  

0A , 

причем 0A тогда и только тогда, когда 0A , т. е. когда A нуль матрица 

размера ss . 

.20                                      sjiaAAA ij ,1,),((,   , 

для любого положительного числа  , где A матрица с элементами )( ija . 

.30                                                 BABA   

для любых двух матриц A и B . При этом под суммой BA  двух матриц 

),1,()(),( sjibBaA ijij  понимается матрица с элементами )( ijij ba  . 

.40 Имеет место неравенство: 

xAxA   

для любого sRx . 
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Определение 2. Точная нижняя грань всех оценок нормы матрицы A  

называется нормой матрицы A  и обозначается (как и оценка) через A . 

Определение 3. Пусть E - ространство с конусом K , содержащим 

квазивнутренние элементы, A  - линейный положительный относительно 

конуса K  оператор. Оператор A  назовается неразложимым оператором, если 

из неравенств  

0,  xAxax , 

следует, что x квазивнутренний элемент K , где a некоторое достаточно 

большое число, 0a .  

В частном случае, когда A  неотрицательная матрица, определение 3 

переходит в определение неразложимой матрицы. 

Определение 4. Пусть A матрица размера ss . Число )(Ap , 

определяемое выражением  

 i
i

Ap sup)(  , 

где i  собственные значения матрицы A , называется спектральным 

радиусом этой матрицы.  

Рассмотрим модель Леонтьева (см. п. 1.1): 

                                      fxAx   ,    0х ,                                                     (2.1.1) 

 где ,0A матрица размера ss , Kf   - вектор- столбец размера s . 

Теорема 2. 1.1 [53]. Пусть выполнено условие  

                                               1)( A .                                                              (2.1.2) 

Тогда модель (2.1.1) имеет и притом единственное неотрицательное  решение 

)( fxx  . При этом 0)(  fx , если оператор A неразложим, а 0f . 

Доказательство. ◄Так как выполняется условие (2.1.2), то существует 

такое 0 , что  

                                                1)( AP .                                                        (2.1.3) 
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Воспользуемся утверждением из [53]: по заданному числу 0 можно ввести 

в пространстве E  такую новую норму 
1

. , которая эквивалентна исходной 

норме .  и удовлетворяет условию: 

                                              1)(
1

 ApA .                                                 (2.1.4) 

Последнее означает, что в этой новой норме оператор  

                                                 fxAxB                                                         (2.1.5) 

является оператором сжатия. Действительно,  

                            
21211121121

1
21121

)(

(

xxqxxAxxAxAxA

fxAfxAxBxB




.               (2.1.6) 

Так как E полное нормированное пространство в исходной норме, то B  

имеет в E  единственную неподвижную точку )( fxx   , к этой неподвижной 

точке сходится последовательность mх , получаемая с помощью метода 

последовательных приближений:  

                                              ,1,01  mxBx mm                                            (2.1.7) 

при любом начальном приближении Ex 0 . Выберем Kx 0 , тогда в силу 

(2.1.5) оператор B −положителен, а это означает, что на основании (2.1.7) все 

элементы последовательности (2.1.7) принадлежат конусу K , а значит, в виду 

замкнутости K , принадлежит  конусу K  и предел )( fxx   . 

Переходя в (2.1.7) к пределу  при m , получим: 

                    xBx , 

т. е.                     

                                                       fxAx   .                                               (2.1.8) 

Остается доказать, что 0)(  fx  в случае неразложимого оператора A  

и 0f . В силу (2.1.8) при  0f , 0x  и   xAx  и из неразложимого 

оператора имеем: 

                                                0x .   

 Перепишем (2.1.1) в виде: 

                                  fхАЕ  )( , 
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где Е – единичная матрица размера ss . Согласно результатам, изложенным 

в п .2.1.5, решение x  модели  Леонтьева будет устойчивым, если матрица Е-А 

является обусловленной. Отсюда и из доказанной теоремы получаем 

следующий результат.  

Теорема 2.1.2. Пусть выполнены условия теоремы 2.1.1, матрица Е-А 

является обусловленной. Тогда модель Леонтьева (2.1.1) является корректно 

поставленной. 

§ 2. Корректность динамической модели Леонтьева 

 

Динамическая модель Леонтьева представляет собой систему 

дифференциальных уравнений [5] 

                                       
 

   ,,0,)( TttC
dt

tdy
tKty                    (2.2.1) 

                                                    ,0
0

yy                            (2.2.2) 

где  ty  – вектор-столбец национального дохода размерности n,  tK  – 

матрица размера nn  коэффициентов полных затрат производственных 

накоплений на единичные приросты элементов используемого дохода,  

                                  ,1
tBtAEtK


        ,1

tСtAEtС


                      (2.2.3) 

 tA  – матрица коэффициентов прямых материальных затрат,  tB  – матрица 

коэффициентов производственного накопления на единицу прироста 

соответствующих видов продукции,  tC  – вектор-столбец потребления 

размерности n, E  – единичная матрица. 

Изучим задачу: найти условия, выполнение которых гарантирует 

(обеспечивает) существование и единственность неотрицательного решения 

задачи (2.2.1), (2.2.2) (т.е. гарантирует разрешимость этой задачи), а так же 

непрерывную зависимость этого решения от  tK ,  tC , 0y  (т.е. решение  

устойчиво к изменениям этих коэффициентов). Эти условия будут 

гарантировать  корректность (2.2.1), (2.2.2.). 

Пусть в модели (2.2.1), (2.2.2) матрица  tK  имеет обратную, 
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непрерывную матрицу  tK 1 в каждый момент ],[ 0 Ttt . Тогда модель (2.2.1), 

(2.2.2) можно переписать в виде: 

                          )()()( 11 tCtKytK
dt

dy   ,                                              (2.2.4) 

                                                    00 yy  .                                                          (2.2.5) 

Для системы (2.2.4) в области nRTD  ],0[  выполнены условия теоремы 4.1 

(теоремы Коши) из [1] о существовании и единственности решения, если 

 tK 1 ,  tС  непрерывны при  Tt ,0 . Кроме того, при выполнении этих 

условий будут выполнены условия следствия 4.1 из [1] о непрерывной 

зависимости решения )(ty  от начальных условий 0y  и следствия 4.2 из [1] о 

непрерывной зависимости y  от  tK 1  и  tK 1  tС . 

 Следовательно, имеет место следующее утверждение. 

Теорема 2.2.1. Пусть в модели Леонтьева (2.2.1)  tС  непрерывна в 

 T,0 , )(tК  имеет непрерывную в ],0[ T  обратную матрицу  tK 1 . Тогда модель 

(2.2.1), (2.2.2) является корректной в области nRTD  ],0[ . 

§ 3. Корректность математической модели  Солоу 

 

     Рассмотрим модель Солоу в абсолютных показателях [35]:  

                               ;teLL 
   ;, LKFK

dt

dK
                                (2.3.1) 

   KtFKKtf ,, 1  , ),(),( 01

teLKFKtF  ,    KK  ,  

где  LKFx ,  - валовый  общественный продукт (ВОП), L – число людей  

занятых в производственном процессе, K - производственные фонды, С - 

фонд непроизводственного потребления, Y   инвестиции. 

     Кроме того  в модели используются следующие экзогенные (заданные вне 

системы) показатели:  годовой темп прироста числа занятых,   доля 

выбывших за год основных производственных фондов,  норма накопления 

(доля валовых инвестиций в валовом внутреннем продукте). Экзогенные 

параметры находятся в следующих границах: ,11     ,10    .10    
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В данном параграфе представлены результаты исследования задачи: 

изучить модель Солоу на корректность. Напомним, что задача (2.3.1) 

поставлена корректно, если при заданных    KLKF ,,,,,  решение (2.3.1): 

существует, 2)  единственно, 3) непрерывно зависит от  KF,,,, .   

  При нарушении любого из этих трех условий задача (2.3.1) является 

некорректно поставленной. 

Будем предполагать, что  Ktf ,  удовлетворяет условиям теоремы Коши 

[1]: она непрерывна в замкнутой области 

                             },:,{ 0  KKatKtD                                        (2.3.2) 

и  удовлетворяют в D условию Липшица относительно K : 

                              0,,, 212  constKKKtfKtf  .                             (2.3.3) 

Тогда в D решение (2.3.1) существует и единственно [1]. Исследуем (2.3.1) на 

устойчивость (непрерывную зависимость) решения от  начальных условий 

(данных).  

Определение 1 [1]. Решение уравнения (2.3.1) непрерывно зависит от 

начальных условий, если для любого ,   существует такое   0 , что при 

 00 KK  для любого  hthtt   ,  будет выполнено неравенство 

,)()(1  tKtK  где  tK   и )(tK  решения уравнения (2.3.1) соответственно при 

начальных условиях   000 )(; KtKKtK  ,   










M

ah


,min , ),(max
),(

KtfM
DKt 

 . 

Оказывается, что решение (2.3.1) устойчиво по начальным данным 

(непрерывно зависит от начальных условий), если правая часть 

удовлетворяет условиям теоремы Коши (следствие 4.1 из [1]). 

Изучим (2.3.1) на устойчивость его решения к изменениям 

коэффициентов и параметров в правой части (2.3.1)  

),,(),(),,(),( 011

teLKFKtFKtFKKtf   . 
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Пусть 

  ,,, 0L . 

Определение 2. Решение ),( tK  задачи  Коши (2.3.1) непрерывно 

зависит от параметра  , где   совпадает с одним из элементов   ,,, 0L , 

если для любого 0  существует     , что при всех     для любого 

 hht ,  будет выполнено неравенство   ),(),( tKtK . 

 Оказывается, что решение (2.3.1) устойчиво к изменениям  параметров 

в правой части уравнения (2.3.1) (непрерывно зависит от параметров), если 

при   правая часть  Ktf ,  (2.3.1) удовлетворяет условиям теоремы Коши 

и 


f
 непрерывна в D [1]. 

На основе проведенных рассуждений убеждаемся в справедливости 

следующего утверждения. 

Теорема 1. Пусть в модели Солоу (2.3.1) ),(1 KtF удовлетворяет в 

области D  из (2.3.2) условию Липшица (2.3.3) и  0,,,, L
f








, 

непрерывна в D по совокупности своих переменных. Тогда (2.3.1) является 

корректно поставленной в D . 

Пример 1. Пусть производственная функция ),( LKF является 

линейной: 

0,0,),(,),( 21021121  constCconstCeLCKCKtFLCKCLKF t . 

Тогда, очевидно,  teLCKCKLKFKKtf  021),(),(    линейно зависит 

от LK,,, и непрерывно зависит  . Отсюда можно заключить, что  

),(1 KtF удовлетворяет условию Липшица (2.3.3) относительно ,,, 







f
K  

непрерывна в D  по совокупности  ,,, 0L . В силу теоремы 1 при данной 

),( LKF  модель (2.3.1) поставлена корректно. 

Пример 2. Пусть производственная функция ),( LKF из (2.3.1) является 

функцией Кобба-Дугласа: 

10,,0,)(),(,),( 1

01

1    constconstCeLCKKtFLCKLKF t . 
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Так как 


















1

0
1 ),(

K

eL
CKtF

t

K
ограничена в D , то для данной 

),(1 LKF условие Липшица (2.3.3) относительно K , очевидно, выполняется. 

Кроме того, ),( Ktf  непрерывно дифференцируема в D  по параметрам из  . 

Тогда на основании теоремы 1 заключаем, что модель (2.3.1) с 

производственной функцией Кобба-Дугласа поставлена корректно в D . 

Пример 3. Пусть ),( LKF из (2.3.1) является производственной 

функцией с постоянной эластичностью замещения: 

    
r

t
r

eLCKCCKtFLCKCCLKF
  1

02101210 )(),(,),(  , 

где rCCC ,,,, 210  -некоторые постоянные, причем ,00 C  ,01 C  ,02 C  ,1  

0r ,  -коэффициент замещения, 0r - показатель степени однородности 

рассматриваемой функции ( чаще всего при изучении модели (2.3.1) считают, 

что 1r ,  т.к. при переходе в (2.3.1) к безразмерным величинам допускают, 

что ),( LKF  имеет степень однородности 1). Исследование на устойчивость 

(2.3.1) с данной производственной функцией можно провести по той же 

схеме, что и в примере 2. 

Очевидно,      

                             11

021101 )(),(    KeLCKCCrCLKF
r

t

K .                (2.3.4)  

Так как правая часть в (2.3.4) ограничена в D , то ),(1 LKF удовлетворяет 

условию Липшица относительно K . Кроме того, очевидно, что ),( LKf  

непрерывно дифференцируема в D  по всем параметрам  .  

Отсюда, воспользовавшись теоремой 1, заключаем, что модель Солоу 

(2.3.1), в которой в качестве ),( LKF выступает рассматриваемая 

производственная функция с постоянной эластичностью замещения, 

поставлена в D корректно.    
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§4 Корректность динамической модели микроэкономики 

 

Динамическая модель микроэкономики представляет собой 

дифференциальное уравнение  [86] (см.также §2 из гл.1) 

                                         )()(
)(

tItaА
dt

tdA
 ,  Tt ,0 ,                                      (2.4.1)  

с начальным условием  

                                                   0)0( АА  ,                                                        (2.4.2) 

где  

                                             fаа ~ ,   
)1(1

)1(~

2

1










k

c
a , 

)(tA стоимость основных производственных фондов; 

f показатель фондоотдачи; 

c удельная себестоимость выпуска продукции в стоимостном выражении; 

)(tI внешние инвестиции, полученные малым предприятием на 

безвозмездной основе; 

21, ставки налога на объем выпуска и прибыль соответственно; 

    доля чистой прибыли, отчисляемой на реинвестирование )10(   ; 

 k   коэффициент, отражающий долю реинвестируемых средств прибыли, не 

имеющих льгот по налогообложению )10(   .   

Для дифференциального уравнения (2.4.1) в области nRTD  ],0[  

выполнены условия теоремы 4.1 (теоремы Коши) из [1] о существовании и 

единственности решения, если  tI   непрерывна при  Tt ,0 . Кроме того, при 

выполнении этих условий будут выполнены условия следствия 4.1 из [1] о 

непрерывной зависимости решения )(ty  от начальных условий 0y  и 

следствия 4.2 из [1] о непрерывной зависимости y  от  tI .  

Следовательно, имеет место утверждение. 

Теорема 2.4.1. Пусть в модели микроэкономики (2.4.1) )(tI  непрерывна 

в области ],0[ T . Тогда модель (2.4.1), (2.4.2) является корректной в области 

D . 
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Выводы  к главе II 

  В данной главе представлены результаты исследования на корректность 

балансовой и динамической моделей Леонтьева, математической модели 

Солоу,  динамической модели микроэкономики. В каждом из указанных 

случаев найдены условия, обеспечивающие корректность указанных 

моделей. 

Эти результаты представляют определенный интерес, т. к. они 

позволяют, при выполнении найденных условий, гарантированно находить 

(при заданных погрешностях в параметрах этих моделей) приближенные 

решения этих моделей, которые будут несущественно отличаться от точных 

решений.   

 

Вопросы к главе II 

1. Что называется конусом? Приведите примеры конусов. 

2. Что называется оценкой нормы матрицы? 

3. Какой оператор называется неразложимым? 

4. Что называется спектром оператора? 

5. Что называется спектральным радиусом оператора? 

6. Что называют собственным значением, собственным вектором 

оператора? 

7. Какое решение называется устойчивым? 
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ГЛАВА III. ФИЛЬТРАЦИЯ ОШИБОК В МАТЕМАТИЧЕСКИХ 

МОДЕЛЯХ, ОПИСЫВАЮЩИХ МИКРО - И 

МАКРОЭКОНОМИЧЕСКИЕ ПРОЦЕССЫ 

§ 1. Фильтрация ошибок измерений вектора спроса в балансовой модели 

Леонтьева 

 

1. Одношаговая фильтрация  ошибок измерений вектора спроса 

 

Экономико-математическая балансовая модель Леонтьева имеет вид 

[40] (см. также §1 главы 1): 

                                                    0,  xfAxx .                                     (3.1.1) 

Здесь A заданная технологическая матрица размера ,nn  

f известный вектор спроса размерности n , 

x неизвестный вектор валового производства (выпуска) размерности 

n , подлежащий определению, 

0 нулевой вектор размерности n . 

Систему (3.1.1) можно переписать в виде: 

                                      0,,  xAEBfBx ,                                          (3.1.2) 

где E  единичная матрица размера .nn .  

Реально элементы ,,,1, nif i   вектора f  не могут быть заданы 

(измерены) абсолютно точно (очевидно, нельзя заранее абсолютно точно 

предсказать спрос на продукцию любой отрасли), а с некоторыми ошибками, 

которые, вообще говоря, имеют случайный характер. Поэтому (3.1.2), с 

учетом ошибок измерений f , можно формально представить в виде:  

                                                    ,0,  xfvBx                                         (3.1.3) 

























nv

v

v

v


2

1
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 случайный вектор - столбец ошибок измерений элементов A  и 

f размерности n  (вектор помех). Будем считать, что v  удовлетворяет 

следующим условиям  [68]. 

1. Математическое ожидание v  равно нулю: 

.0Mv  

2. Известна (задана) симметричная положительно определенная 

матрица ковариаций размера nn  вектора v : 

 TvvMR  . 

Кроме того, допускаем, что выполнены также следующие 

предположения. 

3. Задан вектор   размерности n , представляющий собой 

математическое ожидание (начальное приближение, априорную оценку, 

прогнозное значение) вектора x  из (3.1.3): 

Mx . 

4. Задана априорная ковариационная матрица N  ошибок решения 

(размера nn , симметричная, положительно определенная): 

   T
xxMN   . 

Рассмотрим задачу: по измеренному f  найти неотрицательный вектор 

 , учитывающий результаты измерений f  и доставляющий минимум 

,
2

xM   где x решение системы (3.1.2). 

Данная задача представляет задачу оптимальной линейной фильтрации. 

Согласно [68] она может быть сведена к решению следующей задачи 

квадратичного программирования: 

             0,min11   xxNxfBxRfBx
x

TT
 .     (3.1.4) 

Данная задача может быть решена с помощью программного продукта 

Microsoft Office Excel 2003.  

Пример 1. Пусть в модели (3.1.3)  











3,04,0

5,01,0
A , 










10

01
E , 










20

10
f . 
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Тогда 















7,04,0

5,09,0
AEB . 

Случайный вектор ошибок измерений 









2

1

v

v
v  имеет следующие 

характеристики. 

1. 0Mv , т.е.   01 vM ,   02 vM . 

2. Матрица ковариаций R  вектора v  имеет вид: 











025,0015,0

015,002,0
R . 

3. Начальное приближение  для вектора x  из (3.1.3) задано 

выражением: 




























20

10

7,04,0

5,09,0
1

1 fB = 








3.67

5.39
 

4. Задана ковариационная матрица ошибок решения: 

      


















0196,00154,0

0154,00121,0
14,0;11,0

14,0

11,0T
xxMN  .  

Требуется найти оптимальную оценку x  вектора x  из (3.1.3). 

Подставляя в (3.1.3) указанные данные, с помощью программы 

Microsoft Office Excel 2003 находим:  











1.51

40
x . 

Приведем подробную инструкцию  решения примера 1 с помощью этой 

программы. Этап проведения вычислений представлен на рисунках (3.1.1-

3.1.21).  
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 Рис. 3.1.1. Ввод данных 

 

       

Рис. 3.1.2. Ввод данных 
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Рис. 3.1.3. Ввод матрицы  1R  

 

 

Рис. 3.1.4. Ввод данных   1
 RFBX  
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Рис. 3.1.5. Ввод данных    FBXRFBX   1  

 

 

Рис. 3.1.6. Ввод  матрицы 1B  
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Рис. 3.1.7. Ввод  вектора FB  1 1B  

 

 

Рис. 3.1.8. Ввод вектора  X  
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Рис. 3.1.9. Ввод вектора  TX    

 

 

Рис. 3.1.10. Ввод ковариационной матрицы N  

 

Рис. 3.1.11. Ввод матрицы 1N  
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Рис. 3.1.12. Ввод    1
 NX   

 

Рис. 3.1.13. Ввод результата      
XNX 1  

 

Рис. 3.1.14. Ввод целевой функции. 
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                                 Рис. 3.1.15. Ввод ограничений 

 

               

                              Рис. 3.1.16. Ввод параметров 

         

                 Рис. 3.1.17. Ввод ограничений 

  

         

             Рис. 3.1.18. Результаты поиска решения 
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Рис. 3.1.19. Поиск решения  целевой функции 

 

 

 

Рис. 3.1.20. Решение задачи построено     

 



 59 

 

Рис.3.1.21. Анализ результатов 

 

§2. Многошаговая оптимальная фильтрация ошибок измерений вектора 

спроса в балансовой модели Леонтьева 

 

На практике вектор f  измеряется не один раз, как это предполагалось в 

предыдущем §1, а многократно: k  раз, 1k . Пусть       k

n

kk

k vvvcolv ,,, 21   – 

вектор-столбец случайных ошибок k - го результата измерений компонент 

вектора f . Кроме того, матрицы R , N , вектор   не могут быть известны 

заранее. В этом случае задачу фильтрации: найти оценку   решения x  

уравнения (3.1.2) (или что то же самое - уравнения (3.1.1)), построенную с 

учетом результатов измерений f  и доставляющей минимум 
2

xM  , можно 

решить следующим образом. 

Пусть система (3.1.2), в которой учитываются ошибки измерений kv  

вектора f на каждом шаге ,,2,1 k  представлена в виде: 

                                 ,0,  xfvBx k ,2,1k .                         (3.2.1)                    

Пусть математическое ожидание ,,2,1, kvk  равно нулю: .0kMv   

Обозначим через kR  матрицу размера nn , элементы которой )(k

ijr  

имеют вид: 
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                                    



k

q

q

j

q

i

k

ij
njivv

k
r

1

)()()( ,,1,,
1

 ,                          (3.2.2) 

и представляют собой статистические оценки соответствующих элементов 
ij

r  

симметричной, положительно определенной матрицы 









T

vvMR ; 


k

 вектор размерности n  с элементами 

                                                          




k

q

q

i

k

i
x

k 1

,
1

                               (3.2.3) 

где ix q

i )( -я компонента вектора qx , полученного на q ом шаге измерения 

,f  представляющая собой статистическую оценку компоненты 

ii
Mx вектора Mx ; 

k
N - матрица с элементами  

           ,1

1

q

j

q

j

k

q

q

i

q

i

k

ij
xx

k
n   



 

представляющими собой статистические оценки элементов 

  
jjiiij

xxMn    

симметричной положительно определенной ковариационной  матрицы 

   T
xxMN     размера nn . 

Воспользовавшись методикой построения фильтра Калмана-Бьюси  68 , 

можно заключить, что в данном случае оценка   может быть найдена путем 

решения следующей задачи квадратичного программирования: 

                       0,min
11




xxNxfBxRfBx
x

kk

T

k

T
 .                  (3.2.4) 

Пример 1. Пусть в модели (3.1.1)  











3,04,0

5,01,0
A , 










10

01
E , 










20

10
f ; 

тогда 













7,04,0

5,09,0
AEB . 
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Случайный вектор ошибок k   измерений вектора f  при различных 

4,3,2,1k  имеет вид: 













2,0

1,0
1v , 










2,0

1,0
2v , 










1,0

2,0
3v , 














1,0

2,0
4v . 

Требуется найти оптимальную оценку x  вектора x  из (3.1.1). 

Согласно приведенным данным 

                                  









0

0

4

1
4321 vvvvMv , 

                                     025,04

11
r , 

                                     04

12
r , 

                                     04

21
r , 

                                    025,04

22
r , 

                         
   

    























025,00

0025,0
4

22

4

21

4

12

4

11

4
rr

rr
R . 

Находим  qx , решая систему 

                            fvBx k  . 

При 1k                                          51,39 1

2

1

1  xx , 

 

при 2k                                      32,29 2

2

2

1  xx , 

 

при 3k                                       51,39 3

2

3

1  xx , 

 

при 4k                                     63,46 4

2

4

1  xx . 

 

Далее находим 

             38
4

1

4

1 4

1

3

1

2

1

1

1

4

1
1

4

1
 



xxxxx
g

q , 

             49
4

1

4

1 4

2

3

2

2

2

1

2

4

1
2

4

2
 



xxxxx
g

q , 
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           36
3

1

3

1 3

1

2

1

1

1

3

1
1

3

1
 



xxxx
g

q ,  

           45
3

1

3

1 3

2

2

2

1

2

3

1
2

3

2
 



xxxx
g

q ,  

       34
2

1 2

1

1

1

2

1
 xx ,  

       42
2

1 2

2

1

2

2

2
 xx ,  

    391

1

1

1
 x ,  

    511

2

1

2
 x ,  

                 5,24
4

1

4

1 24

1
1111

4

1
11

4

11
 

 q

qqqq

q

qq xxxn  ,  

            45
4

1
22

4

1
11

4

12
 



qq

q

qq xxn  ,  

    454

12

4

21
 nn ,  

       103
4

1 24

1
22

4

22
 

q

qqxn  ,  

                       
   

    


















10345

455,24
4

22

4

21

4

12

4

114

nn

nn
N . 

Подставляя в (3.2.4) указанные данные, с помощью программы 

Microsoft Office Excel 2003 находим: 











51

40
x . 
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§ 3. Оптимальная фильтрация случайных помех 

в математической модели Солоу 

 

Математическая модель Солоу в абсолютных показателях имеет вид 

[35] (см. также §3 главы  1):  

;teLL  
    ;,1 LKFapK

dt

dK
                        (3.3.1) 

                             00 K ,                                                   (3.3.2) 

 FaI  1 ,   FaС  11  , 

где  LKFx ,  валовый общественный продукт (ВОП), L – число моделей, 

занятых в производственном процессе, K – производственные фонды, С – 

фонд непроизводственного потребления, I  – инвестиции. 

Кроме того  в модели используются следующие экзогенные (заданные 

вне системы) показатели:   – годовой темп прироста числа занятых,   – 

доля выбывших за год основных производственных фондов, a  – 

коэффициент прямых затрат (доля промежуточного продукта в ВОП), p  – 

норма накопления (доля валовых инвестиций в валовом внутреннем 

продукте). Обычно считают [35], что экзогенные параметры являются 

постоянными величинами и  находятся в следующих границах: ,11     

,10    ,10  a .10  p  

Линеаризуем функцию  LKF ,  по K  (например, разложив еѐ по 

формуле Тейлора): 

                                             KLSLKF , .                                            (3.3.3) 

Тогда, подставляя в (3.3.3) вместо L  выражение teLL  0  и вводя 

обозначение  

                                         teLSaptA   01 , 

перепишем уравнение (3.3.3) в виде:  

                                      KA
dt

dK
 .                                                      (3.3.4) 
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В уравнении (3.3.4) не учитываются случайные шумы (помехи), 

которые поступают извне. Обозначим их через  t . Тогда (3.3.4) примет вид: 

   tKtA
dt

dK
 , 

 а начальное условие (3.3.2) −   00 KK  , где 0K заданная случайная величина. 

Кроме того, будем предполагать, что мы измеряем вектор  tK  по 

закону 

       tvtKtDtZ  , 

где  tv  – шумы (помехи), возникающие в процессе наблюдения (измерения) 

 tK .  

Будем считать, что  ,tw   tv  являются независимыми гауссовыми 

случайными процессами типа белого шума с нулевыми средними значениями  

    0 tMtM   и ковариациями 

             

             

          













,0;cov

,;cov

,;cov







T

T

T

vtwMvtw

ttRvtvMvtv

ttQwtwMwtw

 

где  t дельта функция Дирака,   0tQ ,  Tt ,0 ,   0tR ,  Tt ,0 ,    00 KK  

гауссова случайная величина с нулевым средним значением 

  00 KM   и заданной дисперсией 

2

0

2

00  MKDK . 

Поставленная задача сводится к следующей: по заданным 

наблюдениям величины  tZ  на интервале  t,0  найти такую оценку  t  

величины  tK , которая доставляет минимум выражению 

    


 min
2
 ttK ,  Tt ,0 . 

Хорошо известно [58], что такая оценка  tK  представляет собой 

условное математическое ожидание:       tZtKMtK   и может быть найдена 

путем решения задачи: 

 
                  tZtRtDttKtRtDttA

dt

tKd
  112  ,            (3.3.5) 
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  00 K ,                                       (3.3.6) 

где  t решение дифференциального уравнения Риккати  

                     
 

       tQtRtDtA
dt

td
  2122 


,                                (3.3.7) 

удовлетворяющее начальному условию  

                                   0)0(   .                                                                (3.3.8) 

 

Пример 3.1. Построим решение задачи   (3.3.7), (3.3.8) и (3.3.5), (3.3.6)   

с помощью пакета прикладных программ MATLAB при D=1, A=1.5, 

R=3, Q=2, E=1 (см. приложение 1). График функции )(t приведен на 

рис. (3.2.1), график одной из реализаций )(tK  - на рис. (3.2.2). 

 

              Рис. 3.2.1. График функции )(t  
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Рис. 3.2.2. График одной из реализаций )(tK  

 

§ 4. Оптимальная фильтрация случайных помех в динамической модели 

Леонтьева 

 

Динамическая модель Леонтьева представляет собой систему 

дифференциальных уравнений (см.п.2 главы 2) 

 
 

   TttC
dt

tdy
Kty ,0,  ,                                       (3.4.1) 

решение которой удовлетворяет начальному условию: 

                       00 yy  ,                                       (3.4.2) 

где  ty  вектор-столбец национального дохода,  tK матрица 

коэффициентов полных затрат производственных накоплений на единичные 

приросты элементов используемого дохода, 

                                      ,
1

 tAEtBtK       )(
1

tСtAEtС


                         (3.4.3) 

 tA матрица коэффициентов прямых материальных затрат,  tB матрица 

коэффициентов производственного накопления на единицу прироста 
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соответствующих видов продукции,  tC вектор-столбец потребления, 

E единичная матрица. 

Система (3.4.1) − (3.4.2) эквивалентна системе дифференциальных 

уравнений  

                     
 

   tCKtyK
dt

tdy 11        Ttyy ,0,0 0  , 

 или 

                      
 

          tCtBtytAEtB
dt

tdy 11   ,                                (3.4.4) 

                                    Ttyy ,00 ,0  .                                       (3.4.5) 

В задаче (3.4.4) (3.4.5) сделаем замену    txyty  0 . Тогда данная задача 

преобразуется к виду: 

                              
 

           0
11 ytCtBtxtAEtB

dt

tdx
  ,                     (3.4.6) 

                                                          00 x .                                       (3.4.7) 

В системе (3.4.6) (3.4.7) не учитываются случайные шумы (помехи), 

которые реально возникают при измерении коэффициентов уравнения (3.4.6) 

и вектора  tx . Обозначим их через  tw . Будем предполагать, что мы 

измеряем вектор  tx по закону  

       tvtxtDtZ  , 

 tv вектор шумов (помех), возникающих в процессе наблюдения 

(измерения)  tx  и  

                                                    00 xx  .                                       (3.4.8) 

Считаем, что  ,tw   tv  являются независимыми гауссовыми 

случайными процессами типа белого шума с нулевыми средними значениями 

и корреляционными матрицами 

             

             

          













,0;cov

,;cov

,;cov







T

T

T

vtwMvtw

ttRvtvMvtv

ttQwtwMwtw

 

где  t дельта- функция Дирака,   0tQ ,   0tR ,  Tt ,0 . 
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Предполагаем, что  0tx  n мерный гауссов случайный вектор с 

нулевым средним значением 

   00 txM  

и корреляционной матрицей 

     ,000 txtxM T , 

0 неотрицательно-определенная матрица, которая предполагается 

известной. Кроме того, предполагаем, что    tvtw ,  и 0x  независимы. 

Поставленная задача сводится к следующей: по заданным 

наблюдениям  tZ ,  Tt ,0 , найти такую оценку  t  вектора  tx , которая 

доставляет минимум выражению 

     ,min
2


  ttx    Tt ,0 . 

Согласно [61], такая оценка представляет собой условное 

математическое ожидание        tztxMtx   и может быть найдена как 

решение задачи Коши: 

  
 

                       tZtRtDttxtDtRtDttAEtB
dt

txd TT   111 ,    (3.4.9) 

                                                     ,00 tx                                      (3.4.10) 

где  t  удовлетворяет другой задаче Коши:  

                  tQtDtRtDtAEtBtAEtB
dt

d TT


  111 ,   (3.4.11) 

                                                   00  t .                                     (3.4.12) 

Пример 4.1. Построим решение задачи (3.4.11) и (3.4.12) и (3.4.9), 

(3.4.10)   с помощью пакета прикладных программ MATLAB при D=1, A=2, 

R=2, Q=3, E=1, B=2 (см. приложение 2). 

График функции )(t  приведен на рис. 3.4.1, график одной из 

реализаций )(tx  - на рис. 3.4.2. 



 69 

 

                        Рис. 3.4.1. График функции )(t  
 

 
 

           Рис. 3.4.2. График одной из реализаций )(tx  
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§5. Оптимальная фильтрация случайных помех 

в динамической модели микроэкономики 

 

Динамическая модель микроэкономики представляет собой систему 

линейных уравнений [86] (см. также п. 3 главы 1) 

                                          ),()(
)(

tItaA
dt

tdA
   Tt ,0 ,                                     (3.5.1) 

с заданным начальным условием 

                                                    0)0( AА  ,                                                         

(3.5.2) где 

                                          faa ~ , 
)1(1

)1(~

2

1










k

c
a ,  

f показатель фондоотдачи; 

)(tA стоимость основных производственных фондов; 

c удельная себестоимость выпуска продукции в стоимостном выражении; 

)(tM об общая прибыль малого предприятия; 

)(tM чистая прибыль малого предприятия за вычетом налоговых 

отчислений; 

)(tN сумма налоговых отчислений; 

)(tI внешние инвестиции, полученные малым предприятием на 

безвозмездной основе; 

21, ставки налога на объем выпуска и прибыль соответственно; 

    доля чистой прибыли, отчисляемой на реинвестирование )10(   ; 

k коэффициент, отражающий долю реинвестируемых средств прибыли, не 

имеющих льгот по налогообложению )10(   . 

В задаче (3.5.1) (3.5.2) сделаем замену )()( 0 tyAtA  . Тогда (3.5.1), (3.5.2) 

примет вид:  

0)()(
)(

AtItay
dt

tdy
 ,                                             (3.5.3) 

0)0( y ,   Tt ,0 .                                                 (3.5.4) 
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В системе (3.5.3) (3.5.4) не учитываются случайные помехи (шумы), которые 

реально возникают при измерении коэффициентов уравнения (3.5.3) и 

функции )(ty . Обозначим их через )(t . Будем предполагать, что мы измеряем 

)(ty  по закону 

)()()()( tvtytDtZ  , 

)(tv вектор помех (шумов), возникающих в процессе наблюдения 

(измерения)  значений )(ty , )(tD  − заданная функция (функция 

масштабирования), 

                                                     0)0( yy  .                                                       (3.5.5) 

Считаем, что )(t ,  tv  являются независимыми гауссовыми 

случайными процессами типа белого шума с нулевыми средними значениями 

и корреляционными матрицами 

             

             

          













,0;cov

,;cov

,;cov







T

T

T

vtMvt

ttRvtvMvtv

ttQtMt

 

где  t дельта функция Дирака,   0tQ ,   0tR ,  Tt ,0 ,  0ty  гауссова 

случайная величина с нулевым средним значением 

   00 tyM  

и корреляционной матрицей дисперсией 

     0000 )(  tDytytyM T . 

Кроме того, предполагается, что    tvt ,  и 0y  независимы. 

В данном параграфе приведем результаты исследования следующей 

задачи: по заданным наблюдениям  tZ ,  Tt ,0  , найти такую оценку  t  

функции  ty , которая доставляет минимум выражению 

                            2
tty  ,   Tt ,0 . 

Хорошо известно  61 , что такая оценка представляет собой условное 

математическое ожидание     tztyMty )(  и представляет собой решение 

задачи: 
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 
                       tZtRtDttytDtRtDttAEtB

dt

tyd TT   111 ,      (3.5.6) 

                                              ,00 ty                                        (3.5.7) 

где  t  удовлетворяет задаче Коши: 

                  tQtDtRtDtAEtBtAEtB
dt

d TT


  111 , (3.5.8) 

                                               00  t .                                      (3.5.9) 

Пример 5.1. Построим решение задачи (3.5.8), (3.5.9) и (3.5.6), (3.5.7) с 

помощью пакета прикладных программ MATLAB при D=1, A=2.5, R=4, 

Q=1, E=1, B=1 (см. приложение 3). График функции )(t  приведен на рис. 

3.5.1, график одной из реализаций )(ty  - на рис. 3.5.2. 

 

            Рис. 3.5.1. График функции )(t  
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Рис. 3.5.2. График одной из реализаций )(ty  

 

 

§6. Оптимальная оценка валового выпуска продукции закрытого 

акционерного общества «Карачаевский пивзавод» (г. Карачаевск) 

 

Пусть (см. §1 данной главы) 

                                                   fBx  , AEB  ,                                         (3.6.1) 

где Е  − единичная матрица размера nn , 

A заданная технологическая матрица размера nn  балансовой модели 

Леонтьева 

                                                 fAxx  , 0x ,                                             (3.6.2) 

f  − известный вектор спроса размерности n , x  − неизвестный вектор 

валового выпуска продукции размерности n , подлежащий определению, 0  − 

нулевой вектор размерности n . 
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Как и в §1 будем предполагать, что элементы ,,...,1, nif i   вектора f  и 

ija , nji ,...,1,  , матрицы A  представлены в (3.6.1), (3.6.2) с ошибками, которые 

имеют случайный характер. Поэтому (3.6.1), следует переписать в виде: 

                                 ,0,  xfvBx                                               (3.6.3) 

где T

nvvvv ),,,( 21   − случайный вектор ошибок измерений элементов A  и f , 

размерности n  (вектор помех), математическое ожидание которого равно 

нулю: 0Mv . 

Предполагается, как и ранее, что заданы симметричная, положительно 

определенная матрица ковариаций размера nn  

 TvvMR   

вектора v ; вектор Mx  размерности n , представляющий собой 

математическое ожидание (начальное приближение, априорную оценку) 

вектора x  из (3.6.3); априорная ковариационная матрица ошибок решения 

   T
xxMN    

(размера nn , симметричная, положительно определенная) 

В §1 была подробно исследована следующая задача: по заданному f  

найти неотрицательный вектор  , доставляющий минимум ,
2

xM   где x  − 

решение системы (3.6.2). Было показано, что вектор   представляет собой 

решение следующей задачи квадратичного программирования: 

        0,min11   xxNxfBxRfBx
x

TT
 .                      (3.6.4) 

В данном параграфе представлены результаты исследования 

следующей задачи  46 : используя статистические данные межотраслевого 

баланса ЗАО «Карачаевский пивзавод» за 2007 год, приведенные в таблице 1, 

по заданному вектору спроса f  найти оптимальную в среднем квадратичном 

смысле оценку x  решения x  балансовой модели (3.6.2), построенной по этим 

статистическим данным. 

 ЗАО «Карачаевский пивзавод» является крупным предприятием в 

КЧР, в который входят два больших цеха: цех по производству алкогольных 



 75 

и цех по производству безалкогольных напитков. Данные об исполнении 

баланса за отчетный 2007 год приведены в таблице 1. 

Таблица 1 

Таблица межотраслевого баланса ЗАО «Карачаевский пивзавод» за 

2007 год (тыс. руб.) 

Цеха, производящие 

Продукцию 

Цеха, 

потребляющие 

продукцию 

Конечный 

спрос на 

продукцию 

Валовой 

выпуск 

Продукции 
1 2 

1 

Цех  по 

производству 

алкогольных и 

безалкогольных 

напитков 

19535 652 12371 32558 

2 Цех розлива 3792 2528 6318 12638 

 

Согласно данным, приведенным в таблице 1, технологическая матрица 

A  и вектор конечного спроса f  имеют вид: 

                              









2.03.0

02.06.0
A , 










6318

12371
f .                                 (3.6.5) 

Обозначим через 1x  − валовый выпуск цеха по производству 

алкогольных и безалкогольных напитков, 2x  − валовый выпуск цеха розлива. 

Вычислим вначале валовый выпуск 









2

1

x

x
x  цехов ЗАО «Карачаевский 

пивзавод», не учитывая случайные помехи при формировании вектора f . 

Воспользовавшись (3.6.2) и (3.6.5), имеем: 




































6318

12371

2.03.0

02.06.0

2

1

2

1

x

x

x

x
, 01 x , 02x , 

или 
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













.0,0

,63182.03.0

,1237102.06.0

21

212

111

xx

xxx

xxx

                               (3.6.6) 

Из (3.6.6) следует, что 

                                                       


















12638

32558

2

1

x

x
x .                                  (3.6.7) 

Пусть при формировании f  учитываются случайные помехи (ошибки). 

По результатам статистических наблюдений были найдены четыре 

реализации случайного вектора v , представляющего собой ошибку 

измерения вектора f  (в таблице 1 представлены усредненные значения f ): 













2,0

1,0
1v , 










2,0

1,0
2v , 










1,0

2,0
3v , 














1,0

2,0
4v . 

Согласно (3.6.1), (3.6.3) 















8.03.0

02.04.0
AEB . 

Найдем оптимальную оценку x  вектора x  из (3.6.4). 

Из приведенных выше данных следует, что 

  









0

0

4

1
4321 vvvvMv , 

    025,04

11 r ,  

    04

12 r ,  

    04

21 r ,  

    025,04

22 r ,  

   

    























025,00

0025,0
4

22

4

21

4

12

4

11

4
rr

rr
R ,  

Начальное приближение   для вектора x  из (3.6.4) задано 

выражением: 


























 

19868

31921

6318

12371

274.1955.0

064.0548.2
1 fB . 
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Подставляя в (6.4) полученные численные значения B , f , , 1R , 1N . с 

помощью программы Microsoft Office Excel 2003 находим оптимальную 

оценку x  вектора x : 

                                             









19532

31025
x .                                            (3.6.8) 

Сравнивая результаты (3.6.7) и (3.6.8) заключаем, что значения x  в 

(3.6.7), (3.6.8) заметно отличаются от валового выпуска цехов, приведенного 

в таблице 1 при одном и том же спросе на продукцию. Следовательно, 

объемы производства обоих цехов были необоснованно велики и их следует 

скорректировать согласно приведенным расчетам (чтобы избежать потерь 

продукции при ее реализации). 

 

Выводы к главе III 

В третьей главе приводятся  результаты исследований некорректных 

моделей (моделей со случайными шумами). В первом параграфе исследована 

одношаговая фильтрация ошибок измерений вектора спроса в балансовой 

модели Леонтьева. В этой же главе приводится и многошаговая оптимальная 

фильтрация ошибок измерений вектора спроса f. В § 3 была поставлена 

задача: по заданным наблюдениям )(tZ  на интервале  t,0  найти такую оценку 

 t  величины  tK , которая доставляет минимум выражению 

    


 min
2
 ttK ,   Tt ,0 . 

Такая оценка  tK  представляет собой условное математическое ожидание 

      tZtKMtK   и  была определена путем решения задачи: 

 
                  tZtRtDttKtRtDttA

dt

tKd
  112  ,            (3.3.5) 

                                                   00 K . 

 В § 4 рассмотрена оптимальная фильтрация случайных помех в 

динамической модели Леонтьева, где была решена задача: по  по заданным 
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наблюдениям  tZ ,  Tt ,0  , найти такую оценку  t  вектора  tx , которая 

доставляет минимум выражению 

    


 min
2
 ttx ,  Tt ,0 . 

Эта оценка может быть найдена как решение задачи Коши: 

 
                       tZtRtDttxtDtRtDttAEtB

dt

txd TT   111 ,                                                       

  ,00 tx  

где  t  удовлетворяет другой задаче Коши:  

                  tQtDtRtDtAEtBtAEtB
dt

d TT


  111 ,                                                    

  00  t . 

В §5 приведен результат исследования задачи: по заданным 

наблюдениям  tZ ,  Tt ,0 , найти такую оценку  t  функции  ty , которая 

доставляет минимум выражению 

    2
tty  ,   Tt ,0 . 

Эта оценка может быть найдена путем решения задачи: 

 
                       tZtRtDttytDtRtDttAEtB

dt

tyd TT   111 ,       

                                              00 ty .                                        

В § 6 найдена оценка валового выпуска продукции закрытого 

акционерного общества «Карачаевский пивзавод» г. Карачаевска. Здесь 

представлены результаты исследования следующей задачи  43 : используя 

статистические данные межотраслевого баланса ЗАО «Карачаевский 

пивзавод» за 2007 год, приведенные в таблице 1, по заданному вектору 

спроса f  найти оптимальную в среднем квадратичном смысле оценку x  

решения x  балансовой модели (3.6.2), построенной по этим статистическим 

данным. 
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Вопросы к главе III 

1. Что называется математическим ожиданием? 

2. Что называется дисперсией? 

3. Что называется коэффициентом ковариации? 

4. Какая матрица называется ковариационной? 

5. В чем смысл фильтра Калмана-Бьюси? 

ГЛАВА IV. КОРРЕКТНОСТЬ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ, 

ОПИСЫВАЮЩИХ БИОЛОГИЧЕСКИЕ ПРОЦЕССЫ 

 

 § 1. Об одном методе регуляризации задачи Коши со смешанным 

носителем 

 

Пусть Ω = {(x, y): 0 < x < r, 0 < y < T} – прямоугольная область на 

евклидовой плоскости точек, z = (x, y), z = x + iy – комплексная переменная; 

  - замыкание области Ω;    

ζх0 ={(x, y): y = 0, 0 ≤ x < r}, ζ0y = {(x, y) : x = 0, 0 ≤ y < T}, ζ = ζx0  ζ0y. 

В качестве удобной математической модели многих процессов, 

протекающих в физических и биологических системах, допускающей 

подробный анализ, можно выбрать задачу Коши со смешанным носителем ζ 

для классического уравнения теплопроводности 

                            .0,02  constauuа
yxx

                                  (4.1.1) 

В данном параграфе подробно исследуется следующая задача Коши:  

найти регулярное в области Ω решение ),( yxuu   уравнения (4.1.1), 

непрерывное в   и удовлетворяющее заданным условиям:  

                     ,),()0,(
0x

xxxu                                                       (4.1.2) 

                    .),(),0(),(),0(
0 yx

yyyuyyu                           (4.1.3) 

В частности, к задаче (4.1.1) примыкает задача Торнли, которая является 

простой моделью спирального филлотаксиса [52]. В задаче Торнли 

уравнение (4.1.1) заменяется уравнением  

                         ,02  vuuа
yхх

                                                    (4.1.4) 
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а первое условие в (4.1.3) – нелокальным условием  

                                  .0),,(),0( Tyyruyu                                             (4.1.5) 

Отрезок ζ0y, на котором задается условие (4.1.3), представляет собой 

времениподобное многообразие. Отрезок ζхy является характеристикой 

уравнений (4.1.1) и (4.1.2). 

Известно [52], что задача определения в области Ω решения ),( yxu  

уравнения (4.1.1), удовлетворяющего условиям (4.1.3), не является 

корректной по Адамару, хотя она имеет, и притом единственное, решение, 

т.к. она является неустойчивой.  

В заметке [52] А.М. Нахушев в тезисной форме предложил 

регуляризовать задачу 1, заменив уравнение (4.1.1) уравнением в частных 

производных вида 

                                ,02 
yхyхх

uuuа                                            (4.1.6) 

где ε – малый положительный параметр. 

Уравнение (4.1.6) для любого ε > 0 является уравнением 

гиперболического типа, имеет два семейства простых характеристик 

constxyaconsty  2, , первое из которых совпадает с семейством 

характеристик уравнения (4.1.1). 

Далее, не нарушая общности, предполагается, что   1a . 

Фундаментальное решение Г(z, ζ ) = Г (x, y; ξ, η) уравнения (4.1.1), как 

хорошо известно, определяется формулой  
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
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y
zГ                 (4.1.7) 

Ж. Адамар [42] предложил уравнение (4.1.6), чтобы показать, что (4.1.7) 

при ζ = 0 можно получить как предел при ε→ 0 функции Римана. 

В данном параграфе предлагается использовать «возмущенный» 

дифференциальный оператор 

yyxx
A
















2

2

2

  
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для регуляризации задачи 1 и задачи Коши для оператора 

.// 22

0
yхА   

2. Задача Коши для уравнения с малыми параметром. В первую 

очередь рассмотрим задачу Коши (4.1.3) для уравнения  

                                              0uА                                                       (4.1.8) 

в области Ωε, ограниченной отрезком ζ0y и характеристиками y = T, y = ε x 

(см. рис. 1): 

 

 

А0 = (0, 0), В0 = (0, Т), 

С0 = (Т / ε, Т), А0 С0 : y = εх, 

АС: η = ξ; С = (Т, Т). 

В уравнении (4.1.8) перейдем к характеристическим координатам ξ = у – 

εх , η = у и к новой переменной v = v(ξ, η) по формуле  

                                ]./)(exp[),( 2  vu                                    (4.1.9) 

В результате область Ωε отобразится на область Δε = {(ξ, η): 0 < ξ < η < T}, 

отрезок А0 В0 в отрезок  АС, В0 С0 – в ВС, А0 С0 – в АВ; уравнение (4.1.8) 

запишется в виде 

                          ;0,
2

2 






 





























 и                         (4.1.10) 

функция v = v(ξ,  η) в области Δε будет, в силу (4.1.3), (4.1.9) и (4.1.10), 

решением телеграфного уравнения  

                                     0
2

4 



v

v


 ,                                                    (4.1.11) 

удовлетворяющим на АС условию  
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                                ),(),( 2 
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                     (4.1.12) 

где  

                       ]./2exp[)()(],/2exp[)()( 22    vv     (4.1.13) 

 

3. Функции Римана для уравнения (4.1.11) с малым параметром и 

инициированные ее специальные  функции 

В области Δε  рассмотрим уравнение  

                                 ., 2

2

2  



U

yx

U
                                            (4.1.14) 

Известно (см., например, [50, с. 194]), что функция Римана R(x, y; ξ, η) 

для уравнения (4.1.14) однозначно определяется как решение следующего 

интегрального уравнения Вольтерра   второго рода: 

           
yx

dyyxRdxyxR





 ),(,1),;,(
1

),;,(
11112

.            (4.1.15)  

Из (4.1.15) следует, что решение (4.1.15)  представимо в виде:  

                                         R (x, y; ξ, η) = Ф (Z),                                     (4.1.16)  

где Ф(Z) – непрерывная функция аргумента Z = XY, X = x  – ξ  ,Y = y – η. 

  С учетом (4.1.16) из (4.1.15) имеем:  

                           ;)()](1[
1
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11

0

1

2 dYYXФdXZФ
YX

                                 (4.1.17) 

                          ;)()(
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  dtZtФdYXYФ
Y

ZФ
Y

                     (4.1.18) 

                         ).()]()([ '''2 ZФZФZZФ                                         (4.1.19) 

Равенства (4.1.17) – (4.1.19) позволяют утверждать, что функция Ф (Z) 

должна удовлетворять одному из следующих двух условий: 

                                   Ф(0) = 1,    Ф
'
(0)= -1/μ

2
                                       (4.1.20) 

для вырождающегося при Z = 0 обыкновенного дифференциального 

уравнения второго порядка  
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                                            .0)()]([ '2  ZФZZФ
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                                (4.1.21) 

Пусть  ρn =( ρ
1
, ρ

2
,…, ρ

n
) – точка из R

n
 с положительными координатами; 

μn =( μ
1
, μ

2
,…, μ

n
) - вектор с комплексными компонентами; 
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   –      (4.1.22) 

обобщенная функция Райта [4] и Митагг-Леффлера [6]; 
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где ψ(z) = Г
'
 (z) / Г(z)- пси- функция. 

При  n = 2, ρ2= μ2= (1,1) функция  (4.1.22) совпадает с функцией  
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а функция (4.1.23) – с функцией  
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                                (4.1.25) 

которую будем обозначать через J* (z).  

Функция (4.1.24) является решением уравнения [z J (z)]
'
=J(z), с 

функцией Бесселя J0 (z) она связана формулой  J0 (z) = J(-z
2
/4) [6, с. 150]. 

Имеет место следующая  

Лемма 1. Общее решение дифференциального уравнения  

                                          0)()]([  zwzwz
dz

d
                                   (4.1.26) 

задается формулой  

                                     w(z) = C1 J(z) + C2[ J(z) log z - 2J* (z)],                   (4.1.27) 

где С1 и  С2 две произвольные постоянные.  

Формула (4.1.27) вытекает из «общего интеграла », выписанного Э. 

Гурса [22, с. 405] в следующей форме: 

.
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Это легко увидеть, если обратить внимание на то, что 
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xJxJ   

В силу (4.1.24) и (4.1.25) J*(0)= ψ(1), J(0)= 1. Поэтому из (4.1.27) 

заключаем, что видоизмененная задача Коши: 
0

0)(lim
t

wzw для уравнения 

(4.1.26) имеет и притом единственное решение w(z) =w0 J(z). 

Единственное решение Ф(Z) специальной видоизмененной  задачи 

Коши (4.1.20) для уравнения (4.1.21) имеет вид (см. [23,с. 150]): 

                                       Ф(Z) = J (–Z / μ
2
 ).                                          (4.1.28) 

Согласно (4.1.16) и (4.1.28) функция Римана для уравнения однозначно 

определяется формулой 

R(ξ, η; ξ0, η0)=J(- ζ / ε
4
),   ζ = (ξ – ξ0)( η – η0). 

Отсюда, возвращаясь к прежним переменным, получим функцию Римана Rε: 
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    (4.1.29) 

Пользуясь асимптотическим представлением функции Бесселя (4.1.24) 

для больших значений аргумента, можно показать, что функция (4.1.29) при 

ε→0 стремится к функции (4.1.7). 

Решение uε(x, y) задачи Коши (4.1.3) для уравнения (4.1.8) в треугольной 

области Ωε выписывается в явном виде через функцию Римана (4.1.29). Пусть 

ψ0(х) –след этого решения на характеристике А0 С0: у= ε х (см. рис. 1): 

                                          ).(
0

00

xu
CA

                                              (4.1.30) 

В части   области Ω, лежащей ниже характеристики А0 С0, решение 

однозначно определяется как решение ),( yxu 

 первой краевой задачи Дарбу 

(4.1.2), (4.1.30) для уравнения (4.1.8). 

Если r = ∞ и решение и (х, у) задачи Кm ищется в классе функций, 

удовлетворяющих условию Тихонова, то функции θ(х), η(у) и ν(у) не могут 
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быть заданы произвольным образом. Известно (см. [52, с. 30]), что если 

θ(х)0, то η(у) и ν(у) должны удовлетворять уравнению  

а (у)+ 0)(2/1

0


y
D , 

где 2/1

0 y
D -оператор дробного дифференцирования порядка 1/2 с началом и 

концом в точках 0 и у соответственно.  

 

§2. Анализ задачи Торнли 

 

1. Постановка задач. Пусть:   Ttlxtx  0,0:, − 

прямоугольная область на евклидовой плоскости точек  ,, yxz   

 iyxz комплексная переменная;  замыкание области  . 

Рассмотрим уравнение диффузии  

0,2  constavvav xxt  .                                     (4.2.1) 

Задача 1. Найти регулярное в области   решение ),( yxvv   уравнения 

(4.2.1), непрерывное в   и удовлетворяющее условиям: 

  TttSva x
x




0,
2

1
lim 0

0

2 ,                                      (4.2.2) 

   lxTttlvtv ,0,0),,(,0  .                                (4.2.3) 

Данная задача в простейшем случае, когда  

   constconstconstStStS   ,,0),exp()( 110     (4.2.4) 

и концентрация морфогена меняется по экспоненциальному закону 

)exp()( txv   ,                                          (4.2.5) 

впервые была исследована Дж. Г. М. Торнли, поэтому нелокальную задачу 

(4.2.1) − (4.2.3) будем называть задачей Торнли [52].  

Из (4.2.4) следует, что (4.2.5) является решением задачи (4.2.1) − (4.2.3) 

тогда и только тогда, когда функция )(x   является регулярным в 

интервале lx 0  решением уравнения  

a/,02   ,                           (4.2.6)  

удовлетворяющим условию 
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)()0(,2/)0( 1

2 lSa   .                           (4.2.7) 

Если 0 , то единственное решение задачи (4.2.6), (4.2.7) задается 

формулой 

 
)2/(2

)2/(
)(

2

1

lsha

lxchS
x







 .                                          (4.2.8) 

 При 0  функция (4.2.8) характеризует морфогенное поле, порожденное 

стационарным источником силы 1S [52]. 

Лемма 1. Пусть v  регулярное при ,0,0 Ttlx   решение 

уравнения (4.2.1), непрерывное в    Tl ,0,0   и удовлетворяющее условию  

                          Tttlvtvvx
x




0),,(),0(,0lim  . 

Тогда положительный максимум (отрицательный минимум) функции v  в   

достигает лишь в начальный момент времени. 

Из леммы 1 следует, что задача Торнли имеет единственное решение.  

Замена )exp( tvu  сводит задачу Торнли к следующей нелокальной 

краевой задаче для уравнения диффузии Фурье 

lxconstauau xxt  0,0,

2 .                                      (4.2.9) 

Задача 2. Найти регулярное в области решение ),( yxuu  уравнения 

(4.2.9), непрерывное в и удовлетворяющая начальным условиям 

,0),,(),0(

),(),0(

Tttlutu

tvtux




                                   (4.2.10) 

где 

)()exp()(2 0

2 tSttva  , 

constconstconstStStS   ,,0),exp()( 110 . 

Преобразование tayxx 2,   приводит уравнение (4.2.9) к уравнению 

Фурье 

 0 yxx uu .                                                (4.2.11) 

Поэтому можно считать, что 1a . Фундаментальное решение уравнения 

(4.2.9), также как и уравнения (4.2.11), определяется формулой 
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Определение 1. Обобщенным решением уравнения (4.2.9) в области   

назовем любое непрерывное в  решение нагруженного интегрального 

уравнения  
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),;,(),(),0;,(),0(),(

0

00









l

yy

yxFdyxGu

dlyxGludyxGuyxu



 

            (4.2.13) 

где 

 

y l

dfyxGdyxF
0 0

),(),;,(),(  .                           (4.2.14) 

Из свойств этой функции с помощью схемы, приводящей к уравнению 

(4.2.11), убеждаемся, что любое решение задачи 2 при 1a  является 

решением нагруженного интегрального уравнения 

  

t t l

dtxGdtxGvdltxGlutxu
0 0 0

)0,;,()(),0;,()(),;,(),(),(   .       (4.2.15) 

Отсюда, учитывая, что ),(),0( tlutu  , находим  

)(),;,0(),0(),0(
0

xdltGutu

t

    ,                     (4.2.16)  

где 

 

t t

dtGdtGvx
0 0

)0,;,0()(),0;,0()()(   

Уравнение (4.2.15) имеет и притом единственное решение, удовлетворяющее 

условию 

                                                             )(),0( 0 ttu  . 

Поэтому решение задачи 2 при 1a  задается формулой (4.2.15), где 

)(),( 0  lu . 

Если допустить, что )exp(),( ttxuv  , где ),( txu − решение нагруженного 

уравнения Фурье 
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
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xx dxtxu
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ttua
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1

)(),(  ,                         (4.2.17) 

удовлетворяющее условиям (4.2.10) и начальному условию 

 )0( .                                                 (4.2.18) 

Тогда любое решение уравнения (4.2.17), подчиняющееся первому 

условию из (4.2.10), можно представить в виде  

),0()()(
2

),(
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2

tutxvt
a

x
txu   .                              (4.2.19) 

Подставляя (4.2.19) в (4.2.17) и интегрируя, получим: 
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2
tul

tv
l
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t
t 





 .                                 (4.2.20) 

С другой стороны, из (4.2.19) в силу условия (4.2.10) имеем: 

)()(2 2 tltva  .                                            (4.2.21)  

Из этого равенства следует, что )(t и ),0( tu  однозначно определяются из 

(4.2.18), (4.2.21) и (4.2.20).  

 

§3. Разрешимость начально-граничной задачи, 

 описывающей рассеяние примеси в турбулентной атмосфере 

 

В теории и практике современных исследований рассеяния примеси в 

турбулентной атмосфере используются две начально-граничные задачи, 

которые в самой общей постановке имеют вид [47]: 

                    
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 ,                                 (4.3.1) 

 3,2,1,,  jiKK jiij  

                      0
3

1






i i

i

x

u
,                                                                            (4.3.2) 

                      GxxxTTt  ),,(,0,,0 321 , 

  GxxxTtxxxtq  ),,(,,0,0),,,( 321321 ,                               (4.3.3) 

),,(),,,0( 321321 xxxxxxq  ,                                                      (4.3.4) 
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),,(),,,( 321321 xxxxxxtq
G




;                                                (4.3.5) 

 

или (4.3.1)-(4.3.4), где вместо (4.3.5) рассматривается граница 

                                 Vq
v

q

G















 0

 .                                                         (4.3.6) 

Здесь ),,,( 321 xxxtq  - функция, значения которой в каждый момент 

времени ),0[ Tt  совпадает со средним значением концентрации примеси в 

связной области G, 210 GGGG  , 0G  - нижняя, 1G  - боковая, 2G  - 

верхняя части границы G , GGG  ; ),,,( 321 xxxtuu ii  , 3,2,1i , - функции, 

значения которых совпадают со значениями средней скорости ветра в момент 

t  в точке ),,( 321 xxx соответственно вдоль осей 1Ox , 2Ox 3Ox  (рассматривается 

декартова прямоугольная система координат);  ),,,( 321 xxxt   - функция, 

характеризующая убыль примеси в момент t в точке ),,( 321 xxx  за счет либо ее 

радиоактивного распада, либо за счет вступления в химические реакции с 

веществами, находящимися в атмосфере, и компонентами атмосферного 

воздуха; ),,,( 321 xxxtKK ijij  , ,3,2,1, ji  - элементы матрицы коэффициентов 

турбулентной диффузии; ),,,( 321 xxxtff   - функция, моделирующая источник 

выбросов вещества в атмосферу (функция источника); ),,( 321 xxx   - 

функция, значения которой в точке Gxxx ),,( 321  в момент времени 0t  

совпадает со значениями концентрации примеси в атмосфере (функция, 

описывающая фоновую концентрацию); 
v

q




 - производная по внутренней 

нормали 0G : 

          




 






 3

1

),(
),cos(),(lim

),(

),(

j i

ij

Ky

xy y

xtq
xNxtK

xtv

xtq
,          (4.3.7) 

              ),,( 321 xxxxx  ,  ),,( 321 xxxyy  , 

N − внутренняя нормаль к 0G  в точке 0Gx  , K – конечный, замкнутый 

конус с вершиной 0Gx  , который содержится в }{xG  , ),,,( 321 xxxt ,  - 
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функция, характеризующая гравитационное осаждение примеси на 0G , 

),,,( 321 xxxtV  - скорость сухого осаждения примеси на 0G ,  ),0[ Tt , 

0321 ),,( Gxxx  . 

Функция источника примеси  f  задается в виде [47, 67]: 

),,,(),,,(),,,( 321321321 xxxtxxxtQxxxtf  ,                              (4.3.8) 

где ),( xtQ  - мощность источника примеси (масса примеси, выбрасываемой в 

области G   в момент t  в точке Gx ), ),( xt  - дельта функция Дирака. При 

этом, если источник является ( 0t  - момент начала действия источника): 

1) точечным, сосредоточенным в точке Gxxxx  ),,( 0

3

0

2

0

10 ,  

   1.1) мгновенного действия, то constQxtQ ),( ,  

)()()()(),,,( 0

33

0

22

0

11321 xxxxxxtQxxxtf   , 

   1.2) непрерывного действия, то  

        ),( xtQ )(tQ , )()()()(),,,( 0

33

0

22

0

11321 xxxxxxtQxxxtf   ; 

2) линейным, сосредоточенным на интервале ],[ ba  числовой прямой, 

параллельной оси 2Ox  и пересекающей ось 3Ox  в точке ),0,0( 0

3x  

2.1) мгновенного действия, то  

                              













],,[,0

],,[),(

),,,(
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baxxQ

xxxtQ  

)()()()(),,,( 0

33
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112321 xxxxtxQxxxtf   ; 

 2.2) непрерывного действия, то 


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],,[,0

],,[],,0[),,(

),,,(
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22

321 bax

baxTtxtQ

xxxtQ  

)()(),(),,,( 0

33

0

112321 xxxxxtQxxxtf   ; 

3) площадным, сосредоточенным на площадке S, лежащей на плоскости 

21Oxx , и пересекающей ось 3Ox  в точке ),0,0( 0

3x  

3.1) мгновенного действия, то 
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



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321 Sxx
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3321321 xxtxxQxxxtf   ; 

          3.2) непрерывного действия, то 
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4) поверхностным, сосредоточенным на поверхности ПS  тела П  

4.1) мгновенного действия, то 
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4.2) непрерывного действия, то 
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Уравнение (4.3.1) можно переписать в эквивалентном виде: 
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                          3,2,1,
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Следует заметить, что уравнение (4.3.9) ( а значит и (4.3.1)) совпадает с 

уравнением: 

                                    ФfLu   ,                                                            (4.3.11) 
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,                                (4.3.12) 

из [83] при n=3 c точностью до знака у f  и Фf : f  и Фf  имеют 

противоположные знаки (см. (7.1) из гл.1, (3.2) из гл.2, (2.12) из гл. 3, (1.1), 
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(1.3) из гл. 5 [84]). Этот факт будет учитываться в приводимых ниже 

результатах исследования. 

Уравнению (4.3.1) поставим в соответствие уравнение 
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уравнению (4.3.9) – уравнение 

                         
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отличающиеся соответственно от (4.3.1) и (4.3.9) лишь видом функции f: 

вместо f задаваемой выражением (4.3.8), здесь рассматривается мощность 

источника примеси Q . 

 В данном параграфе исследуюм следующую задачу: найти (указать) 

условия, при выполнении которых задачи (4.3.1)-(4.3.5). (4.3.1)-(4.3.4), (4.3.6) 

имеют единственное решение (под решением каждой из этих задач будем 

понимать обобщенное решение в смысле [43]). 

Несмотря на очевидную необходимость проведения таких исследований 

(решению аналитическими и численными методами указанных начально-

граничных задач посвящено значительное число работ, в которых изначально 

явно или неявно допускается, что решение рассматриваемой задачи 

существует и единственно), подобных исследований в этом направлении до 

настоящего времени не проводилось. Как правило, авторы публикаций, 

посвященных различным проблемам математического моделирования 

рассеяния примеси в атмосфере, либо вообще не затрагивают этот вопрос  (о 

существовании и единственности решения), либо без должного на то 

основания ссылаются на классические работы [84], [43]. Ниже можно будет 

убедиться: достаточно ясное и четкое освещение данного вопроса не 

является тривиальным и требует скрупулезного анализа результатов из [84], 

[43]. Исключение составляет монография [47], однако в этой работе найдены 

лишь достаточные условия единственности решения задач типа (4.4.1) 
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((4.3.9)) - (4.3.5), (4.3.1) ((4.3.9)) - (4.3.4), (4.3.6). Вопрос о существовании их 

решения в [47] не затрагивался. 

Теорема 1. Пусть коэффициенты iu , ijK ,  , 3,2,1, ji , принадлежат 

классу )( 4
2

, T
DH




 и ограничены на TD
4

, кроме того iu , ijK  непрерывно 

дифференцируемы по ix , 3,2,1, ji   в TD
4

, 0,0  Q , ,Q  ограничены, Q  

удовлетворяет условию Гѐльдера с показателем  ,   непрерывна в TD
4

,  G  

удовлетворяет условиям Ляпунова. Тогда задача (4.3.1) – (4.3.5) при 0  

имеет единственное  решение, совпадающее с решением задачи (4.4.13), 

(4.3.2) − (4.3.5). 

Доказательство. 

◄Так как  iu , ijK , 3,2,1, ji  непрерывно дифференцируемы по ix  в TD
4

, то 

уравнение (4.3.1) эквивалентно уравнению (4.3.9), уравнение (4.3.13)  -

уравнению (4.3.14). 

Рассмотрим задачу (4.3.13), (4.3.2) – (4.3.5), которая эквивалентна задаче 

(4.3.14), (4.3.2)- (4.3.5). При выполнении условий данной теоремы, очевидно, 

выполняются условия теоремы 16.2 из гл. 4 § 16 [43], а значит, решение 

задачи (4.3.14) ((4.3.13)), (4.3.2), (4.3.4), (4.3.5) существует, теоремы 5.2 из гл. 

4 § 5 [43], а значит решение задачи (4.3.14) ((4.3.13)), (4.3.2), (4.3.4), (4.3.5) 

единственно и оно представимо в виде: 

                   3213213210

0

321 ),,,;,,,(),,,( dydyQdyyyyxxxtqdxxxtq
G

t

  

               3213213213210 ),,(),,,;,,,( dydydyyyyyyyxxxtq
G

                           (4.3.15) 

(см. соотношение (16.17) из [43]), 

где  ),,,;,,,( 3213210 yyyxxxtq   - функция Грина для задачи (4.3.14) ((4.3.13)), 

(4.3.2), (4.3.4), (4.3.5) в области TD
4

, т.е. 0q  удовлетворяет уравнению:  
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и условиями:  

                                   0),,,;,,,( 3213210 yyyxxxtq  ,                                          (4.3.18)    

                          0),,,;,,,(
),,(3213210

321


 Gxxx

yyyxxxtq  .                                     (4.3.19) 

Кроме того, в условиях данной теоремы выполняются условия теоремы 

2.1 и следствия 2.1 из гл. 1 § 2 [43].  

А тогда 

  0),,,( 321 xxxtq , TDxxxt 4321 ),,,(  .                                   (4.3.20) 

Из данных рассуждений, (4.3.20) и условий 0Q , 0  следует, что если 

выполнены условия данной теоремы, то решение задачи (4.3.14) ((4.3.13)), 

(4.3.2)-(4.3.5) существует и единственно. 

Учитывая равенство  (4.3.8) и используя свойства   - функции Дирака 

[18], соотношение (4.3.15) можно переписать в эквивалентном виде: 

             3213213210

0

321 ),,,;,,,(),,,( dydyfdyyyyxxxtqdxxxtq
G

t

  

                  3213213213210 ),,(),,,;,,,( dydydyyyyyyyxxxtq
G

  .                          (4.3.21) 

         Снова воспользовавшись свойствами   - функции, непосредственным 

подсчетом можно убедиться, что функция (4.3.21) удовлетворяет уравнению 

(4.3.9), а, следовательно, и уравнению (4.3.1). Учитывая, что 

),,,;,,,( 3213210 yyyxxxtq   является функцией Грина для задачи (4.3.13), (4.3.2)-

(4.3.5) (т.е. решением задачи (4.3.17) − (4.3.19)), заключаем, что функция 

(4.3.21) удовлетворяет условиям (4.3.3), (4.3.4), (4.3.5). Значит, решение 

(4.3.1) − (4.3.5) существует и единственно. ► 

Теорема 2. Пусть выполнены все условия теоремы 1. Тогда задача 

(4.3.1) − (4.3.5) при 0f , 0  имеет единственное  решение. 

Доказательство. 

◄ Если выполнены условия данной теоремы, то: 1) выполнены все 

условия теоремы 16.1 из гл. 4  § 16 [43], а значит, решение задачи (4.3.9), 



 95 

(4.3.2), (4.3.4), (4.3.5) при 0f , 0  существует; 2) выполняются все 

условия теоремы 5.2 из гл. 4  § 5 [43], а значит, решение задачи (4.3.9), 

(4.3.2), (4.3.4), (4.3.5) при 0f , 0  единственно; 3) выполняются все 

условия теоремы 2.1 из гл. 1  § 2 [43], а значит, согласно следствию 2.1 из 

этой теоремы, решение задачи (4.3.9), (4.3.2), (4.3.4), (4.3.5) при 0f , 0  

неотрицательно, т.е. выполняется условие (4.3.3). 

Уравнение (4.3.9) эквивалентно уравнению (4.3.1). А тогда, согласно 1) 

- 3), решение задачи (4.3.1) - (4.3.5) при 0f , 0  существует и 

единственно. ► 

Теорема 3. Пусть выполнены все условия теоремы 1. Тогда (4.3.1) − 

(4.3.5)  имеет единственное решение, совпадающее с решением (4.3.13), 

(4.3.2) − (4.3.5). 

Доказательство.  

◄Все условия теоремы 3 те же, что и условия теоремы 1.2. Обозначим 

через ),,,( 3211 xxxtq  решение задачи (4.3.1) − (4.3.5)  при 0 , через 

),,,( 3212 xxxtq  - решение этой задачи при 0f , 0 . Непосредственным 

подсчетом легко убедиться, что ),,,( 321 xxxtq ),,,( 3211 xxxtq ),,,( 3212 xxxtq  

является решением (4.3.1) - (4.3.5). Так как ),,,( 3211 xxxtq , согласно теореме 1, - 

единственное решение задачи (4.3.1) - (4.3.5)  при 0 , согласно теореме 2, - 

единственное решение задачи (4.3.1) − (4.3.5) при 0f , 0 , то ),,,( 321 xxxtq , 

очевидно, будет единственным решением задачи (4.3.1) − (4.3.5). ► 

Перейдем к анализу задачи (4.3.1) - (4.3.4), (4.3.6). 

Теорема 4.  Пусть выполнены условия а), b) из пункта 2, iu , ijK  

непрерывно дифференцируемы по ix , 3,2,1i  в TD4 , граница  1CG , Q  

непрерывна по Гѐльдеру по х с показателем   равномерно в 
T

D 4 ,   

непрерывна в G  и равна  нулю в некоторой G  - окрестности границы G , 

v,  непрерывны на ],0[0 TG  . Тогда решение задачи (4.3.1) - (4.3.4), (4.3.6) 

существует и единственно. 
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Доказательство. 

◄ По условию iu , ijK , 3,2,1i  непрерывно дифференцируемы по ix   в 

TD4 . Поэтому уравнение (4.3.1) эквивалентно уравнению (4.3.9), уравнение 

(4.3.13) – уравнению (4.3.14). 

Аналогично тому, как мы это делали при доказательстве теоремы 1, 

рассмотрим задачу (4.3.13), (4.3.2) – (4.3.4), (4.3.6), эквивалентную задаче 

(4.3.14), (4.3.2) – (4.3.4), (4.3.6). 

Если выполнены условия данной теоремы, то, очевидно, выполняются 

условия теоремы 2 из гл. 5  § 3 [84] (случай n=3). Откуда следует, что 

решение q  задачи (4.3.14) ((4.3.13)), (4.3.2), (4.3.4), (4.3.6) существует, 

единственно и представимо в виде: 

                              
G

t

dSrxxxtГdxxxtq ),,,(),,,;,,,(),,,( 321

0

321   

                             
G

dddxxxtГ  ),,(),,,;,,,( 321                          (4.3.22) 

                      dddQxxxtГd
G

t

 ),,,(),,,;,,,( 321

0

,  

где ),,,( r   непрерывная на ],0[ TG  функция, являющаяся решением 

интегрального уравнения (3.8), которое представимо в виде (3.10) из гл. 5 § 3 

[84], dS - элемент поверхности G , Г – фундаментальное решение уравнения 

0Lq ,  

                       0
(.)

(.)
(.)(.)

(.)
1 1

23

1















 

 

n

i

n

j ji

ij

i i

i
xx

K
x

h
t

L                     (4.3.23) 

                      ( 0
(.)

(.)
(.)(.)

(.)
1 1

3

1



















 

 

n

i

n

j j

ij

ii i

i
x

K
xx

u
t

L  ).              (4.3.24) 

Обозначим в (4.3.7) (а значит и в (4.3.6)) 

),cos(),(),(
3

1

xNxtKxtb
j

iji 


 . 

В условиях нашей теоремы выполняются (для случая n=3) все условия 

теоремы 2.2 из гл. 1 § 2 [43] (принцип максимума). А тогда, согласно этой 

теореме, ),( xtq  удовлетворяет неравенству 
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



















)min(
1

);0,(min;min,0minsup),(
)(

0

)(

1
011

01

1
40

tt

G

t
tt

Da

Qe
a

xue
b

ve
xtq

t




 
,      (4.3.25) 

2

3

2

2

2

1 bbbb  , 

)),((max
1

4

0 xtKa
t

D

 , 

),,( 321 xxxx  ,  001  tt . 

Рассмотрим выражение 

         
G

t

dSrxxxtГdxxxtq ),,,(),,,;,,,(),,,( 321

0

321   

                
G

dddxxxtГ  ),,(),,,;,,,( 321                                       (4.3.26) 

           dddfxxxtГd
G

t

 ),,,(),,,;,,,( 321

0

 , 

полученное из (4.3.22) путем замены в последнем слагаемом (4.3.22) Q  на f. 

Из (4.3.8) и свойств   - функции Дирака следует, что (4.3.26) эквивалентно в 

T
D 4  (4.3.22), т.е. 

               ),,,(),,,( 321321 xxxtqxxxtq  , TDxxxt 4321 ),,,(   .                             (4.3.27) 

Из (4.3.27) вытекает, что ),,,( 321 xxxtq  удовлетворяет условиям (4.3.3), 

(4.3.4), (4.3.6), так как этим условиям в TD4  удовлетворяет ),,,( 321 xxxtq . 

Подставим формально (4.3.26) в (4.3.1), т.е.  вычислим ),,,( 321 xxxtqL , 

TDxxxt 4321 ),,,(  , Gxxx ),,( 321 , где (.)L  имеет вид (4.3.24). 

Согласно (4.3.26), (4.3.24) 

             
G

t

dSrxxxtГdLxxxtqL ),,,(),,,;,,,(),,,( 321

0

321   

               
G

dddxxxtГL  ),,(),,,;,,,( 321                                 (4.3.28) 

             dddfxxxtГdL
G

t

 ),,,(),,,;,,,( 321

0

. 

Вычислим выражение в правой части (4.3.28), упростив для этого каждое 

слагаемое: 
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                             
G

t

dSrxxxtГdL ),,,(),,,;,,,( 321

0

  

                                      
G

dSrxxxtГ ),,,(),,,;,,,( 321                       (4.3.29) 

                                       0),,,(),,,;,,,( 321

0

 
G

t

dSrxxxtLГd  , 

так как по условию  ),,,;,,,( 321 xxxtГ  - фундаментальное решение 

уравнения 0qL , а согласно определения Г 

     0),,,;,,,( 321 xxxtГ ,  при Gxxx ),,( 321 , G),,(  , и                                

0),,,;,,,( 321 xxxtLГ .                                                                               (4.3.30) 


G

dddxxxtГL  ),,,(),,,;,,,( 321       

  0),,,(),,,;,,,( 321  
G

dddxxxtLГ  ,                       (4.3.31) 


G

t

dddfxxxtГdL  ),,,(),,,;,,,( 321

0

 

 
G

dddfxxxtГ  ),,,(),,,;,,,( 321                              (4.3.32) 

  ),,,(),,,(),,,;,,,( 321321

0

xxxtfdddfxxxtLГd
G

t

   . 

Равенство (4.3.32) вытекает из равенств 

                  )()()(),,,;,,,( 321   zyxxxxtГ , 

          ),,,()()()(),,,( 321 xxxtfdddzyxtf
G

   

и равенства (4.3.30). 

Из (4.3.28), (4.3.29), (4.3.31), (4.3.32) следует, что 

                    ),,,(),,,( 321321 xxxtfxxxtqL  . 

Из (4.3.33) заключаем, что ),,,( 321 xxxtq  является решением уравнения 

(4.3.1), из (4.3.27) – что решение единственно и оно удовлетворяет условиям 

(4.3.3), (4.3.4), (4.3.6) (в силу того, что этим условиям удовлетворяет 

),,,( 321 xxxtq ). ► 

Полученные результаты принимаются для анализа математических 

моделей, используемых на практике. 

Убедимся, что для основных начально-граничных задач, используемых в 

прикладных исследованиях рассеяния примеси в турбулентной атмосфере, 
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выполняются все условия теорем 1-4 из пункта 3. В этих задачах обычно 

полагают, что коэффициенты и функции в задачах (4.3.1) – (4.3.5), (4.3.1) – 

(4.3.4), (4.3.6) имеют следующий вид [9] (для полного соответствия с 

обозначениями, используемыми на практике, будем считать, что xx 1 , yx 2 , 

zx 3 ). 

                   zczuu ln)( 111  ,  01  constc ,  032  uu                          (4.3.34) 

(этот случай означает, что ось Ох сориентирована по направлению вектора 

скорости ветра, а скорость ветра вдоль оси Оz изменяется по 

логарифмическому закону), 

                           













,3,2,1,,0

,,0

iji

jiK

K

ij

ij  

т.е. в матрицы коэффициентов диффузии учитываются только диагональные 

элементы, а все элементы, не расположенные на главной диагонали, считают 

равными нулю; при этом 122211 ucKK  , 02  constc , где 1u  задается 

выражением (4.3.34), 4333 czcK  , 03  constc , 04  constc . 

В качестве G  часто выбирают [47] прямой круговой цилиндр высоты H с 

достаточно большим радиусом  R основания, расположенного на 

подстилающей поверхности  z= 0. Предполагается, что H меньше высоты так 

называемого пограничного слоя атмосферы [9]. Такой способ задания G 

удобен при аналитических (если это возможно в отдельных случаях [67]) и 

численных решениях рассматриваемых начально-граничных задач. 

Функции voQ ,,,,,    задают таким образом, что выполняются условия 

теорем 1-4. Чаще всего полагают, что эти функции являются постоянными 

величинами в G. 

При данном выборе iu , 3,2,1i , условие (4.3.2) выполняется 

тождественно. 

Для указанных iu , GvK ij ,,,,,,   условия теорем 1- 4 

выполняются. Поэтому используемые в прикладных исследованиях задачи 
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вида (4.3.1) – (4.3.5), (4.3.1) – (4.3.4), (4.3.6) всегда имеют (и при том одно) 

решение. 

Обратим внимание на следующее обстоятельство. При численном 

решении задач (4.3.1) – (4.3.5), (4.3.1) – (4.3.4), (4.3.6) в уравнении (4.3.1) 

часто f заменяют на Q без должного на то обоснования. Однако, результаты 

численных расчетов в этом случае удовлетворительно согласуются с 

экспериментальными данными. Объяснить этот факт можно следующим 

образом. Из доказательств теорем 1- 4 следует, что вид  ),,,( 321 xxxtq  не 

зависит от выбора в уравнении (4.3.1) в качестве свободного члена f  или Q 

(см. (4.3.15) и (4.3.21), (4.3.22) и (4.3.26), (4.3.27)). Поэтому и результаты 

численных расчетов (при замене  f  на Q  в уравнении (4.3.1)) всегда  будут 

хорошо согласованы с экспериментальными данными (если только, конечно, 

сама модель (4.3.1) – (4.3.5) или (4.3.1) – (4.3.4), (4.3.6) адекватно 

экспериментальным данным описывает изменения значений ),,,( 321 xxxtq  в G). 

 

Выводые к главе IV 

 

В этой главе рассмотрена задача Коши со смешанным носителем   для 

классического уравнения теплопроводности  

0,02  constauua yxx , 

 найдено регулярное в области   решение ),( yxuu   этого уравнения, 

непрерывное в   и удовлетворяющее заданным условиям:  

.),(),0(),(),0(

,),()0,(

0

0

yx

x

yyvyuxyu

xxxu








 

Переформулирована теорема о корректной постановке второй краевой задачи 

для уравнения гиперболического типа. 

 В этой же главе подробно рассмотрена разрешимость начально-

граничной задачи, описывающей рассеяние примеси в турбулентной 

атмосфере.  
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Вопросы к главе IV 

1. Какая функция является функцией Бесселя? 

2. Что называется турбулентной атмосферой? 

3. Какое уравнение называется уравнением со смешанным носителем? 

4. Что называется дельта функцией Дирака? 

 

ЗАКЛЮЧЕНИЕ 

 

В данном пособии изложены основные понятия о экономических 

моделях Солоу и Леонтьева, о моделях из биологии, о математических 

моделях микроэкономики,  фильтрах Калмана - Бьюси для линейных 

алгебраических уравнений и стохастических систем. Приведены и подробно 

описаны уравнения соотношения баланса в экономической модели 

Леонтьева, и модели экономического роста Солоу, решены задачи на 

корректность. В пособии   также изучается задача Коши в области Q    

    lTtQ ,0,0   

0,  constauau xxt  

   ttu ,0 ,       ttux ,0 , Tt 0 , 

   xxu 0, ,  lx 0 ,     00   , 

которая часто изучается в математической биологии. Приводится метод 

регуляризации (по Тихонову) решения операторного уравнения.  

                            Ау = f,   уL2,,   f  L2,                                             

где  А - линейный вполне непрерывный оператор,    f- заданная правая часть,           

у - искомое решение. 

       Также приведены результаты теории линейной фильтрации 

наблюдаемых стохастических объектов, описываемых линейными 

стохастическими дифференциальными уравнениями. 

     В пособии приводятся уже полученные результаты в ходе проведенных 

исследований. Так в первом параграфе второй  главы исследована 

одношаговая фильтрация ошибок измерений вектора спроса в балансовой 
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модели Леонтьева. В этой же главе приводится и многошаговая оптимальная 

фильтрация ошибок измерений вектора спроса f, рассматривается модель 

Солоу, приводятся результаты измерений модели Солоу на корректность ее 

постановки. 

Изучается также линеаризованная модель Солоу, рассмотрен вопрос о 

разрешимости динамической модели Леонтьева и исследована задача: по 

данным наблюдениям    ],0[, Tttz  , найти оценку  t  вектора  t , которая 

доставляет минимум выражению. 

В четвертой главе исследована задач Коши и задача, описывающая 

рассеяние примеси в турбулентной атмосфере, а также применение данных 

математических моделей в биологии. В этой же главе рассмотрена задача 

Коши со смешанным носителем   для классического уравнения 

теплопроводности  

                                          0,02  constauua yxx  

и найдено регулярное в области   решение ),( yxuu  уравнения, 

непрерывное в   и удовлетворяющее заданным условиям  

,),(),0(),(),0(

,),()0,(

0

0

yx

x

yyvyuxyu

xxxu








 

и также переформулирована теорема о корректной постановке второй 

краевой задачи для уравнения гиперболического типа. В IV главе также 

подробно рассмотрена разрешимость начально-граничной задачи, 

описывающей рассеяние примеси в турбулентной атмосфере, приведены и 

доказаны 4 теоремы о существовании и единственности решения 

поставленной задачи. Полученные результаты применяются для анализа 

математических моделей, используемых на практике. 
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ПРИЛОЖЕНИЕ 1 

 
sigma=dsolve('Df=3*f-(f^2)/3+2','f(0)=0') 

sigma = 

  

1/70*(3*105^(1/2)+35*tanh(1/210*(35*t-

2*105^(1/2)*atanh(3/35*105^(1/2)))*105^(1/2)))*105^(1/2) 

  

 

z=[1:1:100]; 

t=[0:0.1:1]; 

for j=1:11 

sigmat(j)=1/70*(3*105^(1/2)+35*tanh(1/210*(35*t(j)-

2*105^(1/2)*atanh(3/35*105^(1/2)))*105^(1/2)))*105^(1/2); 

end 

k=dsolve('Dk=(1.5-(1/3)*sigma)*k+1/3*sigma*z','k(0)=0') 

k = 

  

2/(-9+2*sigma)*sigma*z-2*exp(-1/6*(-9+2*sigma)*t)/(-9+2*sigma)*sigma*z 

>> for j=1:11 

for i=1:100 

ktz(i,j)=2/(-9+2*sigmat(j))*sigmat(j)*z(i)-2*exp(-1/6*(-9+2*sigmat(j))*t(j))/(-

9+2*sigmat(j))*sigmat(j)*z(i); 

end 

end 

[Z,T]=meshgrid(t,z); 

>> mesh(Z,T,ktz) 
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ПРИЛОЖЕНИЕ 2 

 

>> sigma=dsolve('Df=-f-(f^2)/2+3','f(0)=0') 

 sigma = 

 -1/7*(7^(1/2)-7*tanh(1/14*(7*t+2*7^(1/2)*atanh(1/7*7^(1/2)))*7^(1/2)))*7^(1/2) 

>> t=[0:0.1:1]; 

>> for j=1:11 

sigmat(j)=-1/7*(7^(1/2)-7*tanh(1/14*(7*t(j)+2*7^(1/2)*atanh(1/7*7^(1/2)))*7^(1/2)))*7^(1/2); 

end; 

>> x=dsolve('Df=-f/2-sigma*f/2+sigma*z/2','f(0)=0') 

  

x = 

  

1/(1+sigma)*sigma*z-exp(-1/2*(1+sigma)*t)/(1+sigma)*sigma*z 

  

>> z=[1:1:50]; 

>> for i=1:50 

for j=1:11 

xt(i,j)=1/(1+sigmat(j))*sigmat(j)*z(i)-exp(-1/2*(1+sigmat(j))*t(j))/(1+sigmat(j))*sigmat(j)*z(i); 

end 

end 

>> [Z,T]=meshgrid(t,z); 

>> mesh(Z,T,xt)>> 
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ПРИЛОЖЕНИЕ 3 

 

>> sigma=dsolve('Df=-3*f-0.275*(f^2)+1','f(0)=0') 

  

sigma = 

  

-2/1111*(3*1010^(1/2)-

101*tanh(1/2020*(101*t+2*1010^(1/2)*atanh(3/101*1010^(1/2)))*1010^(1/2)))*1010^(1/2) 

  

  

>> t=[0:0.1:1]; 

>> for j=1:11 

sigmat(j)=-2/1111*(3*1010^(1/2)-

101*tanh(1/2020*(101*t(j)+2*1010^(1/2)*atanh(3/101*1010^(1/2)))*1010^(1/2)))*1010^(1/2); 

end; 

>> y=dsolve('Df=-1.5*f-0.25*sigma*f+0.25*sigma*z','f(0)=0') 

  

y = 

  

1/(6+sigma)*sigma*z-exp(-1/4*(6+sigma)*t)/(6+sigma)*sigma*z 

  

  

>> z=[1:1:100]; 

>> for i=1:100 

for j=1:11 

yt(i,j)=1/(6+sigmat(j))*sigmat(j)*z(i)-exp(-1/4*(6+sigmat(j))*t(j))/(6+sigmat(j))*sigmat(j)*z(i); 

end 

end 

>> [Z,T]=meshgrid(t,z); 

>> mesh(Z,T,yt) 

>> plot(t,sigmat) 

>> 
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